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PREFACE

This report represents the completion of one phase of the

study of the stability of co_trol systems, a study spensoreC, ky the

National Aeronautics and Space Admini-_tration under Grant NsG-490

on research in and application of modern automatic control theory

to nuclear rocket dynamics and control. The report is inten(]ed to

be a self-cont_ined unit and therefore repeats some of the work

presented in previous status reports.

Portions of the _:ork were submitted to the Department of

Electrical Engineering at The University of Arizona in partial ful-

fillment of the re.luirements for the ciegree of Doctor of Philosophy;

this dissertation research was supported in part by the National

Science Foundation under Grant GP-2237.
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ABSTRACT

In this work the Second Method of Liapunov_ the Popov frequency

criterion and the matrix-lnequallty method are used to study the stabil-

ity of certain nonlinear and/or time-varying control systems. Systems

with more than one nonlinear or time-varying element are considered_and

the type of stability of interest is absolute stability; that _sj global

asymptotic stability.

The introductory material contains a description of the types

of systems which are to be considered_ stability definitions_ and sta-

bility theorems of the Second Method. For systems with one nonlinear

element_the Popov criterion and its geometric interpretation are given.

The matrix-inequality method is used to develop the connection between

tile Second Method of Liapunov and the Popov criterion_ thereby proving

the Popov criterion. The Liapunov function used is of the Lurie type;

that is 3 a quadratic form of the state variables plus the integral in-

volving the nonlinearity.

Systems with a single time-varying element are considered next_

and the use of a quadratic Liapunov function without the integral is

shown to give results equ_v_leat tc those of Bongiorno, Sandberg and

N_rendra and Goldwyn. Inclusion of the integral of the time-varying

elements results in a Liapunov function which is no longer V(x__ but

is V(x,t). The results of putting bounds on the integral of the time

derivative of the nonlinearity_ which appears in dV/dt_ are easily

vii
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demonstrated By use of the matrix-inequality method. A lengthy example

is used to indicate when this last criterion gives imFroved results.

The principal contribution of this wcrk is an extension of the

matrix-inequality method to systems with more than one nonlinear or

time-varying element. The matrix-inequality method states that a

scalar function of the real frequency must always be positive to conclude

that a certain set of algebraic equations had a solution. The new result

is that a matrix which is a function of real frequency must be positive

definite for all real frequencies, if a correspondingly more involved set

of algebraic equations is to have a solution. The new result allows

stability criteria to be derived for systems with more than one non-

linear or time-varying element_which are analogous to the previous cri-

teria for systems with one nonlinear or time-varying element.

Examples are included to illustrate the use of the new criteria,

and a comparison with previous results is made. The case where the sys-

tem equations contain a zero eigen_alue in their linear part is _Iso

discussed. An appendix is included in which the criteria described above

is used to extend someresults on stability cf forced systems.

In conclusion_ the main contribution of this work is an extension

of the matrix-inequality method to systems with more than one nonlinear-

ity. This results in new stability criteria which are extensions of

criteria which exist for systems with a single nonlinear and/or time-

varying element.



Chapter 1

INTRODUCTIONTOTHEPROBLEM

i. 1 Introduction

The development of modern technology has brought forth many

complicated devices and systems which defy analysis by the conventional

methods of linear control system theory. Not only are there no design

methods available for these systems, but even the problem of whether

or not they are stable presents great difficulty. This work considers

the stability of three types of systems which are described by ordinary

differential equations: linear systems with time-varying parameters;

nonlinear systems, especially those with more than one nonlinear ele-

ment; and nonlinear, time-varying systems.

The tools used in studying these systems are the Second Method

of Liapunov, the stability criterion which was developed by the Rumanian

engineer V. M. Popov, and an approach to Popovls work known as the ma-

trix-inequality method which was developed by the Russian mathematician_

V. A. Yakubovich.

1.2 Historical B_ckground

The trend in modern control theory has been away from the fre-

quency domain_ block diagram approach and toward what might be considered

the "old-fashioned" differential equation representation of the control

system. The main reasons for this are: first_ nonlinear and/or time-

varying systems cannot be handled by the frequency techniques that are

I
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so po_,erful for linear, non-time-varying systems; and second, the coming

of ag_ of the digital computer has enabled computations to be performed

on large systems of differential equations.

Onebreak in this returnt0 the time domain has been in the

area of stability theory, where the criterion derived by V. M. Popov

(1961) has surprisingly put the study of the stability of a large class

of noplinear and time-varying systems back into the frequency domain.

However. even here. the derivation starts out with the system represent-

ed by a set of differential equations rather than by a transfer function.

For a system with one nonlinear or time-varying element, the transfer func-

tion of the linear, time-invariant part of the system is then used in

obtaining a powerful geometric interpretation of the Popov criterion.

However, there is a direct connection between the work of Popov

and the Second Method of Liapunov. By exploiting this connection the

stability criteria developed in this work are derived. Liapunov d__-

veloped his Direct or Second Method in the late nineteenth century,

but it was not until the early 1940's in Russia and the early 1960's

in the United States that engineers became interested in the theory.

Popov developed his criterion for nonlinear systems in the late 1950_s

and early 1960_s.

The two main additions to Popov_s theory are the papers of Yaku-

bovich (1962) and Kalman (196_). Their contributions are indicated at

the appropriate place in the work which follows. The application of the

Popov criterion to time-varying systems was first made by Rozenvasser

(1963).
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There is substantial literature on the subject of Liapunov's

SecondMethod. The standard references are Liapunov's monograph(1949),

the books of Hahn (1963), and LaSalle and Lefschetz (1961), and the

article by Kalman and Bertram (1960). Besides the previously mentioned

papers on the Popov criterionj there are the books by Aizerman and

Gantmacher (1964) and Lefschetz (1965). The above mentioned books and

papers contain extensive bibliographies.

Recently a great deal of work has been done on the problem

of the stability of time-varying systems. Some work on time-varying

circuits from tl_e energy point of view was done by Darlington (1964),

Rohrer (1964) and Kuh (1965). While of theoretical interest, these

methods are not discussed here since other methods seem to give better

results as far as stability is concerned. A real frequency criterion

has beer, developed by B_ngiorno (1963_ 1964) for linear systems and

Sandberg (1964) for nonlinear systems, both for the case of one time-

varying element. Narendra and Goldwyn (1964) get similar results using

the Second Method. These criteria will be shown to be equivalent to

the Popov criterion.

There are also some theorems from the theory of linear differen-

tial equations with time-varying coefficients which seem to have been

largely ignored in the engineering literature. A complete theory for

linearly differential equations with periodic coefficients exists and

is known as Floquet theory (Coddington and Levinson 1955). Parts of

this theory have been used by various people in developing sufficient

stability criterion for time-varying systems. However, the full use of

the Floquet theory, which can easily be done using a digital computer,
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gives necessary and sufficient conditions for stability or, in other

words, the exact stability information. There are also theorems avail-

able for linear systems with variations that go to zero as time increases.

The theorems are due to Bellman (1953) and are discussed in Chapter 2.

1.3 Organization of the Work

The second chapter is essentially a background chapter in which

the systems to be treated are described_ and their stability is discussed.

First there is a mathematical description of the general system under

consideration_ and then the various special cases of this general case

are discussed. Then there are the definitions of the various types of

stability which are needed and a discussion of absolute stability. Bell-

man_s theorems on almost constant 3 linear_ time-varying systems are then

presented and their use discussed. Finally some theorems on the Second

Method of Liapunov are given. There is a discussion of the difficulties

involved in using the Second Method which indicates how the Popov cri-

terion can help.

The third chapter introduces Popov_s work for systems with one

nonlinear element and includes a geometric interpretation of the results.

There is a statement and proof of a lemma which is the heart of Yakubo-

vichts matrix-inequality method. This is then used to show the

connection between the Second Method and the Popov criterion.

Chapter 4 is devoted t_> systl, ms with one time-varying element,

either linear or nonlinear. The use of the Popov stability criterion

for this type of system is shown to be valid, and the connection of the

Popov criterion with the works of Bongiorno_ Sandberg, and Narendra and



Goldwyn is given.

various criteria.
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This results in more geometric interpretations of the

The chapter concludes with an extension of the pre-

vious work due to Rekasius and Rowland (1965).

Chapter 5 contains most of the original contributions of this

work. The extension of the previous work to systems with more than one

nonlinear element is given, l_is requires extending the lemmaof Chap-

ter 3 from a scalar case to a matrix case. This is then used for time-

varying systems to extend the result of Rekasius and Rowland to the case

where more than one elcmeut is time-varying. There is also an extension

of somework due to Letov (1961) in which he discusses tile stability of

systems with two actuators.

Chapter 6 contains conclusions and suggestions for further re-

search. An appendix is included which presents an application of the

previous work to forced systems, thereby extending the work of Yakubo-

vich (1964) on nonlil_ear, forced systems.

1.4 Notation

Due to the large amount of different quantities involved in the

mathematical derivations_ it is necessary to use a mixture of the Greek

and English alphabets. Capital English letters_ such as A_ B_ P_ and

Greek letters with a bar over them_ such as _ are used to represent ma-

trices. The exceptions to this are V(x)_ which is used as the Liapunov

function; W(x) which is used in conjunction with V(x_ t) in Chapter 2;

and G(s) or G(j_) and W(_), which are the t cansfer function and modified

transfer function of the linear part of a nonlinear system with one non-

linear element. Small English letters which are underlined are vectors



or column matrices_ e.g., c_ b, x. Small Greek and English letters_

subscripted or not_ are scalars_ such as_ 7_ _I _ YI' x.

The following are notations used in connection with matrix

operations. A _ is the transpose of the matrix A. A _ is the conjugate-

transpose or adjoint of the matrix A. HeA is the Hermitian part of A

and equals I(A + A_. The identity matrix is denoted by I. The nota-

tion A > 0 means that A is positive definite. Saying that A is a sta-

ble matrix means that all the eigenvalues of A are in the left half

plane.



Chapter 2

SYSTEMREPRESENTATIONANDSTABILITY

2.1 Introduction

The purpose of this chapter is threefold. First, the classes

of systems which are under consideration are discussed_ then the sta-

bility of such systems is defined_ and finally pertinent stability

theorems are presented.

The second section begins with a discussion of the general

nth order system with m nonlinear_ time-varying elements. The various

special cases of the general system are then given_ that is_ the

linear, time-varying case, the single nonlinearity case, and the single

nonlinearity with a zero eigenvalue in the linear part of the system.

In the third section the different kinds of stability which are

needed are defined. Such stability concepts as global stability_ asymp-

totic stability, uniform stability, and absolute stability are discuss-

ed. Then_ in the fourth section, the stability of a special class of

linear_ time-varying systems known as "almost constant" systems is

discussed. The theorems presented for this class of systems are due

to Bellman (1953).

The last section presents stability theorems of the Second

Method of Liapunov. The difficulties encountered in applying the

Second Method are discussed_ especially in regard to time-varying

systems. This leads into the Popov criterion which is presented in

Chapter 3.



8

2.2 Sjstem Representation

Many complex systems, such as systems with many control actua-

tors, can be described by a matrix set of equations of the form

x " Ax + Bu

u = - f(2, t), f(O,t) = O (2-1)

(y = Clx

where A is a constant, n by n matrix with all its eigenvalues in the

left-half plane (such a matrix is referred to as a stable -_trix), B

and C are n by m matrices, x is a n-dimensional state vector, u is the

m-dimensional control vector_ and

fl(_l,t)

f2(_2 ,t)

f(__, t) =

fm(_m,t)

where 0 J fi(ai,t)/_i J k i It is assumed that the rank of B is equal

to the dimension of the control vector 2. If this is not true_ then one

can always reduce the number of control variables by means of the proper

linear transformations until it is true (Melsa 1965, ch. 7).

The restriction of the fi(_i,t ) to the sector [0, ki] is no real

restriction since any system of the same type, but with some nonlinear-

ity gi(_i,t) such that kai _ gi(_i,t)/_ i J kbi , can be put into the

proper form by the substitution fi(_i,t) = gi(_i,t) - kaioi. As usual

the square brackets are used to indicate the closed interval. The
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half-open interval 0 < f (_i)/oi _<ki is indicated by (0,ki].

A special case of the general system is the linear_ time-vary-

ing case.

given by

The equations are the sameexcept that now the vector u is

u- - F(t)__ ,

where F(t) _ diag (fl(t), ..., fm(t)), 0 J fi(t) J k i. Putting the ex-

pression for _ into this equation and then putting _ into the differen-

tial equation results in the linear_ time-varying m_tr_× equation

= (A - B F(t) C _) _ (2-2)

The stability of this equation in the special case that F(t) approaches

the zero matrix as t approaches infinity is discussed in section five

of this chapter.

Another very important case of the general system (2-1) is the

case where m _ i, that is_ the single nonlinear and/or time-varying

element system. Repeating the system equations for this case gives

x=Ax+bu

u - - f(o,t)_ 0 _< f(_,t)/_ < k (2-3)

- cix f(0,t) = 0

This is just the differential equation of the familiar_ single-loop_

control system_ Fig. I. The transfer function of this system in terms

of the above matrices can be calculated as follows. Take the Laplace

transform of the differential equation in (2-3). The result is

sx(s) ,,, A x(s) + _bu(s)
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+ jU (_

Fig. I. n-th Order System with One Nonlinearity.

and u Variables Defined.



where the initial conditions are assumedto be zero as usual. Solve

this equation for x(s).

(sI - A) _(s) = _ u(s)

_(s) = (sl - A)
-i

b u(s)

Substitute this equ_tlon into the equation for _(s).

_(s) = c'x(s) = c'(sI - A) -I b u(s)

The result is

The transfer function is given by the ratio of o(s)/u(s).

G(s) = c_(sl - A) -I b (2-4)
u(s) = - -

The block diagram of this system is given in Fig. I.

Another important class of systems with one nonlinearity is the

case of systems with a pure integration in the open loop system. The

equations are similar to (2-]) except that the A matrix has one zero

eigenvalue and all its other eigenvalues are in the left-half plane.

When this is true, the dimension of the A matrix can be reduced by one

by means of suitable linear transformations, and the zero eigenvalue

equation is removed from the set of equations given in matrix form. The

resulting set of equations is

Z = AI Z + blU

u = -f(_)

= f(_)

!

= ! I Z - _

(2-5)

ii
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Again the transfer function of this set of equations can be found and

it is

G(s) = c _ (sl i b I +If (2-6)
--I - All- s

or C(s) = el(s) + X
s

One possible block diagram of this transfer function is given in Fig.

2. If the block diagram is given and the system under consideration

has a pole at the origin, the proper state variables for writing the

differential equation in the form of (2-5) can be obtained by first

breaking up the block diagram as shown in Fig. 2. It can be seen from

this that the quantity _ is actually the gain constant of the system

and therefore must be positive.

In identifying the types of systems in the single nonlinearity

case, the terminology of Aizerman and Gantmacher (19641 is followed, and

the case of the A matrix with no zero or pure imaginary eigenvalues is

called the principal case. Other cases are called particular cases, and,

when the A matrix has one zero and no imaginary eigenvalues, it is called

the simplest particular case. Also, in the particular case the non-

linear sector must be 0 < f(_,t)/_ _< k, that is, f(a)/_ is not allowed

to be zero. If f(_)/a is allowed to be zero, then the integration term

of the system would Just integrate without any feedback and the system

would be unstable.

2.3 Stability Definitions

It is assumed that the only singular point of (2-1) is the

origin so that x = 0 is a point solution of the equation. Then the
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Fig. 2. Block Diagram Defining Variables for

the Simplest Particular Case.
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stability of (2-1) is defined as the stability of the solution x _ 0

Definition 2-1: The null solution of the system (2-1) is said

to be Liapunov stable (or just stable) at t = to, provided that

for an arbitrary positive _ > 0 there is a 8 _ $(, , to) such

that whenever I_(to)l < $, the inequality l_(_(to), to , t)l < c

is satisfied for all t _ to .

Definition 2-2: The null solution of the system (2-1) is said to

be asymptotically stable if it is stable 2 and if the limit as t

approaches infinity of _(_(to) , to , t) equals zero.

Some other stability concepts are also needed. If the quantity

appearing in Definition 2-1 does not depend on to_ then thc system is

uniformly stable. If the system is asymptotically stable for all _(to)

in the entire state space, then the system is globally, asymptotically

stable. Kalman and Bertram (1960) give the following as the conditions

for uniform, global, asymptotic stability

Definition 2-3: The equilibrium state x _ 0 is globally, uniformly
asymptotically stable if - --

(a) it is uniformly stable

(b) it is uniformly bounded, i.e.. given any e > 0 there is some

_(.) such that _X(to) _ _ _ implies Ix(x(to), to, t)_ _

for all t __ito.

(c) every motion converges to x -- O as t approacl1_s infinity

uniformly in to and IX(to) l _< , when _ is fixed but

arbitrarily large; i.e., given any e > 0 and P > 0 there is

some T(F,_r) such that IX(to) I _< ,] implies Ix(X(to) , to, t)l _<

for all t _ t o + T.

Also, if the system is globally, asymptotically stable for any fi(oi) in

the sector [O,ki] , then the system is absolutely stable. The absolute

stability of the time-varying system is defined as uniform, global

asymptotic stability for any fi(_i,t) in the sector [0,ki]. In what

is to follow the concept of absolutely stable systems plays a large part.

There have been some objections to trying to find absolute

stability. It can be said that one is not really interested in absolute
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stability since systems don't operate in the entire state space_ so that

better results should be forthcoming if an operating region about the

origin is considered, and then asymptotic stability is shown in that

region. An answer to this is the fact that just because absolute sta-

bility can be shownfor a given differential equation does not meanthat

the system that the equation represents is absolutely stable. It is the

differential equation which is chosen to model a given system which is

only valid in someregion of the state space, and not the stability

properties of that eq-atien.

Oneother objection is that absolute stability puts no restric-

tion on the slopes of the nonlinearity_ as all that is required is that

it remain in the sector. If the slope of the nonlinearity is restrict-

ed, perhaps some better answers would result in many cases. This is

actually a current research area with the results of Brockett and Wil-

lems (1965) being about the only indication of success in this area.

Before the stability theorems of the Second Method of Liapunov

are given, some stability theorems of a special class of linear time

varying systems, called "almost constant" systems, are discussed. These

theorems have largely been ignored in the engineering literature and are

included for completeness.

2.4 The Stability of Almost Constant Systems

In his book on the stability theory of differential equations,

Bellman (1953) presents some theorems on a class of linear_ time-varying

systems which he calls "almost constant". The system is represented by

the equation x = A(t) x, where the terminology "almost constant" comes
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from the condition that the limit as t approaches infinity of A(t) equals

a constant matrix A. This equation can be a special case of (2-2).

Writing (2-2) as

x = (A + B(t))x (2-7)

where

lim B(t) = 0

t-_ _

puts the equation in the proper form to apply the theorems.

Two theorems for this type of system are now stated without

proof; the proof is in Bellman=s book.

Theorem 2-1: If all solutions of i = A[, where A is a constant

matrix, are bounded as t approaches infinity, the same is true

of the solutions of (2-7) provided that

CO

f lB(t)f dt <

to

Theorem 2-2: If all solutions of _ = A_ approach zero as t

approaches infinity the same is true for the solutions of (2-7)

provided that IB(t) l j c for t _ to _ where c is a constant

which depends on A.

Although these theorems deal with a large class of linear

systems_ they may lead to trouble in engineering work unless care is

taken in their application. The problem is that although the linear

system is eventually stable_ it may have solutions which grow to very

large values before finally approaching zero. When this is the case_

the linear model which gives the equations may no longer be valid_ and

the physical system could be unstable.
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If the linear model is no longer valid, then Theorems 2-1 and

2-2 are not valid, and a nonlinear model of the system along with the

stability theorems of the Second Method of Liapunov must be used.

These stability theorems are presented next.

2.5 Stability Theorems of the Second Method of Liapunov

Before stating some stability theorems of the Second Method of

Liapunov, a few definitions need to be made. These definitions concern

real_ scalar functions of the state x and the time t.

Definition 2-4: A real scalar function V(x) is called positive

definite (positive semidefinite) if in a neighborhood of the

origin V(x) > 0 (V(x) > 0) and V(0__) = 0.

Definition 2-5: A real scalar function V(x,t) is called positive

definite in a region of the origin if

V(x,t) _>_ _ wl(x)
a nd

v(o,t) = o

where Wl(X ) is positive definite.

Definition 2-6: A real scalar function V(x,t) is called negative

definite if -V(x,t) is positive definite.

Using these definitions the following theorems (Szego_ 1961) can now

be stated

Theorem 2-3: If for t _ t o there exists a real scalar function

V(_,t) in the neightborhood S of the origin, V(_,t) being con-

tinuous and possessing continuous first partial derivatives with

respect to x i and t, and satisfying

i) V(x,t) is positive definite in S for t _ t o

2) V is not positive (i.e., negative semi-definite) in S for

tit o
then the trivial solution x = 0 of (2-1) is stable (Liapunov

stable) .
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Theorem 2-4: If conditions I) and 2) of the above theorem are

3) V(x.t) is positive definite and also dominated for t _> to

by another W2(x ) (i.e., Wl(X ) _V(x,t) _ W2(x_) )

4) V is negative definite in S for t _ to

then the trivial solution x_ = O of (2-1) is asymptotically

stable.

Theorem 2-5: If in the above two theorems S is the entire state

space, and in addition

lira V(x, t) = _

x --) o0

uniformly on t, t _> to , then the trivial solution is, respective-

ly, globally, uniformly stable and globally, uniformly, asymptotical-

ly stable.

For the case of time invariant systems there is an extension

of the above theorem which states that asymptotic stability can be con-

cluded for V(x) _ 0 provided that V(x) is not identically zero for any

solution other than x = 0 One of the problems with time-varying sys-

tems is the fact that this extension is not valid, therefore requiring

a definite

One of t.e main factors holding back the application of the

Second Method is the lack of methods for finding the best V-function for

a given system. This is especially true for the case of time-varylng

systems. There does not seem to be any method available which can be

used to generate Liapunov functions which have an explicit dependence

on time. Therefore, either V-functions are generated which have no de-

pendence on time or specific V-functions are picked.

One class of V-functions which has received much attention is

the Lurie type, a positive definite quadratic form of the state vari-

ables plus integrals of the nonlinear terms, l_le V-functions are posi-

tive definite in the entire state space and V can be put in a form
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such that. if certain conditions are satisfied_ it must be negative

definite, and absolute stability is concluded. For systems with one

nonlinear element these certain conditions are the Popov frequency

criterion. For the case of the single nonlinearity system the Popov

criterion gives necessary and sufficient conditions for the existence

of this type of V-functlon. The fact that Popov_s condition gives

necessary and sufficient conditions for the existence of the V-function

of the Lurie type in the simplest particular case has been known since

Yakubovich's work (1962). Hcr_yever,recently Yakubovich (1964b) has

shownthat this is true for the principal case also.

As will be seen in Chapter 3_ the advantage of the Popov cri-

terion over the straightforward application of the SecondMethod is

the ease with which it is used. Another advantage is that since it is

a necessary and sufficient condition for the existence of a V-function

of the proper form. it actually ,eives the results which are equivalent

to finding the best V-function of that specific type (Aizerman and

Gantmacher 1964, Appendix). Tl_is is important in time-varying systems_

as can be seen by considering just the simple quadratic form of the

state variables as the V-function. The use of the Popov criterion

gives the best quadratic V(x) for a given system. If the Popov cri-

terion did not exist 3 this best V(>_)could only be found by a long and

complicated search procedure, since V is a function of the system

parameters as well as the particular quadratic form chosen for V(x).

For high order systems a considerable amount of work is required to

do this.



with

tested for definiteness_ as the satisfaction of the Popov criterion

guarantees that V is positive definite and V is negative definite.

2O

Another advantage of using the Popov criterion in conjunction

the Lurie type V-functlon is that V and V do not have to be

In

trying to find Liapunov functions for high order systems by other tech-

niques_ one of t]le main difficulties is that there is no easy way of

testing high order non-quadratic functions for definiteness.

Chapter 3 presents an extensive discussion of the Popov criterion

ter 3 is to Uevelop a background from which the stability of system (2-1)

can be studied.



Chapter 3

THE STABILITY CRITERION OF POPOV

3. I Introduction

In this chapter the stability criterion which was formulated by

the Rumanian engineer V. M. Popov is presented. Popovls work is con-

cerned mainly with the absolute stability of the single, time-i_variant,

nonlinearity type of system given by (2-3). Only t_is case is discussed

in this chapter with extensions to the time varying case to appear in

the next chapter.

There has been much research in the last fifteen years on the

absolute stability problem. This research was initiated by the Russian

Lurie, and it concerns finding sufficient conditions for the stability

of (2-J) by using a Liapunov function which is a quadratic form of all

the state variables plus an integral cf tile nonlinearity. The type of

Liapunov function is sometimes referred to as the Lurie type.

In the late 1950is Popov began working on frequency domain cri-

teria for nonlinear systems. He published his main paper in 1961_ and_

in a short time_ Yakubovich (1962_1964b) and Kalman (1963) completed

Popov_s work in an important way. The result is that the Popov cri-

terion gives necessary and sufficiez_t conditions for the existence of

a Liapunov function V of the Lurie type_ which insures the absolute

stability of the system.

21
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The main advantage of the Popov criterion over the Liapunov

function method is that it can be interpreted graphically in a manner

which requires just the polar plot of the amplitude and phase of a

modified frequency function. This function is obtained by slightly

modifying the system transfer function. Therefore_ the differential

equations of the system do not actually have to be knownj andj what is

even more important, high order systems can be handled as easily as

low order.

The chapter has two main sections. Section 3.2 contains a

statement of the Popov stability criterion and develops its geometric

interpretation. In the last section the relationship between the Popov

criterion and the SecondMethod of Liapunov is given. This is done by

meansof a lemmawhich is basically the matrix-inequality method of

Yakubovich. Both the principal case (2-3) and the simplest particular

case (2-5) are considered.

3.2 The Popov Criterion

In this section the Popov stability criterion is stated, and a

geometric interpretation of it is given. The systems considered are the

principal case and the simplest particular case of the class of systems

with one time-invariant nonlinearity. For convenience the equations of

these systems are repeated. The principal case is

x =Ax +bu

u = -f(a). 0 < f(o)/o _< k (2-3)

a = C_X



The block diagram is given in Fig. i where

G(s) = !'(sl - A) -I _ - _As "I _ (2-4)
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The equations of the simplest particular case are

i = Ale + u

u = -f(o) 0 < f(o)/ < k

(2-5)

i -

G(s) = !{(sI - AI)-I61 +_
s

For the particular cases it is necessary to introduce the concept of

stability-in-the-limit. The particular case is said to be stable in

the limit if for u = -_a , with c b 0 and sufficiently small, the

linear system obtained from (2-5) is asymptotically stable. This is

to make sure that the root locus of the linear system is in the left

half plane for all linear gain between zero and k. This is a more

significant problem for systems where the A matrix has a double root

at the origin or pure imaginary zeros. These cases are not considered

here. The reason for having f(_)/_ greater than zero, rather than

greater than or equal to zero, for the simplest particular case is

discussed in section 2.2.

Now that the class of systems has been specified, the V. M.

Popov stability criterion can be stated. The statement of the follow-

ing theorem is essentially the same as that given in Aizerman and Gent-

macher (1964).



Theorem 2-1: For theprincipal case of (2-3) to be absolutely
stabla in the sector [o, "k] and for the simplest particular

case (2-5) to be absolutely stable in tile sector (o, k]_ it is
sufficient that there exist a finite real number _ such that

for all real ,_ _ 0 the following inequality is satisfied.

1
Re(l + j_OC(j_O += > 0

K
(3-I)

24

The importance of the Popov criterion is due in a large part

to its simple geometric interpretation. A new function W(_o)_ called the

modified frequency function_ is defined such that

ReW( ) = ReG(j_)

ImW(_) = o:ImG(j_)

(3-2)

so that the polar plot of W(_!) is obtained from that of G(j_) by multi-

plying all its ordinates by the corresponding value of ,_. Here it is

assumed that the transfer function G(s) always has more poles than

zeros_ so that lira G(j_) = 0 However; if there is only one more pole
--._ OO

than zero_ then lim W( ) has a limit point on the imaginary axis not

at the origin.

The modified frequency response function is used to obtain the

geometric interpretation. Let

W(_,) _ X + jY

then

Re(l + j_ )G(j_,) = ReG(j_) - f_ ImG(j_ ) = X

Hence (3-1) can be written as

X - _Y + I > 0 for all _' > 0
k

(3-3)



Tile equation
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1

X - !-4 +_ = 0 (3-4)

is the equation of a straight line with slope I/B, which passes through

the point -I/k on the real axis. As in Aizerman and Gantmacher, this

line is called the Popov line. The inequality (3-3) is valid if the

modified frequency plot is in that part of the plane which is to the

right of the -i/k point and does not intersect the Popov line. Figure 3

shows two possible stable systems.

In the case f! = O_ the modified frequency response does not have

to be used. In that case (3-1) reduces to

Rea(J )+ ! > 0 (3-5)
k

so that as lon_ as the plot of G(j_) is to the right of the vertical

line through I/k (i.e., the slope 1/3 is infinite), the system (2-3) or

(2-5) is absolutely stable. An example of this is shown in Fig. 4.

A more complete look at the various results which are available

for the different particular cases of the system (2-3) is given in

Aizerman and Gantmacher (1964) and in the series of papers by Yakubovich

(1963a, 1963b, 1964a).

3.3 The Relation B_,tween tile Popov Criterion and the Second Method

In this section the relation of the Popov criterion (3-1) to a

Lurie type Liapunov function is discussed. Two Liapunov functions are

used; V 0 for the principal case and V I for the simplest particular case.

(Y

V 0 = xWPx + _ i

"_)

f(z)dz (3-6)
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Popov Line

Fig. 3. Geometric Interpretation of the Popov

Criterion - Stable Systems.

1

Fig. 4. Popov Criterion - Y_= 0 - Stable System
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V 1 -- x_Px + ,(o-_c'x) 2 + f_ /_ f(z)dz (3-7)

0

Here P is a positive definite_ symmetric matrix. Popov also considered

adding the term_r_x_ to V 1 to get the most general quadratic form_ but

he proved that it is necessary that r --O In Fig. 3 the geometric

criterion is shown for 6 both positive and negative. Aizerman and Gant-

macher (1964, p. 58) show that these two different cases are related by

a linear change of variables which just interchanges the sides of the

nonlinear sector [0_ k] For this reason only the case of _ _ 0 is

considered in what follows.

Before proceeding any further, a lemma is proven which is of

great use in what is to follow. INlis lemma is due originally to Yaku-

bovich (1962) with the sufficiency proof following Lefschetz_s (1965)

version of Kalman's (196]) work. The term _R does not appear in the

above works but is inspired by the work of Rekasius and Rowland (1965)

whose results are stated as a corollary. In most applications the term

pR m O_ but since it is needed for some special cases, it is included

in the derivation which follows.

Define A_, by

A w = (j_.l - A) (3-8)

Since the matrix A has all its eigenvalues in the left half plane_ the

-i
matrix A w, is always nonsingular for all _ and _,! exists.

Lemma I: Given the stable, n by n_ real_ matrix A; syn_netric_

n by n_ real, matrices D >_ 0 and R _ 0; n-vectors g _ 0 and

h _ 0; and scalars T > 0_ c > 0_ and @ such that the right hand

side of (a) is negative definite; then a necessary and suffici-

ent condition for the existence of a solution as a symmetric_



n }?y n_ real_ matrix P (:leccssarily > O) and an n-vector

q of the system

A_P + PA _- q qL pR - cD (a)

Pg - h - _ q (b)

is that e be smallenough_ and that the relation

+ 2Reh'_ -I -ll RA- £ - Pf_w :o £ > 0

be satisfied for all real

(*)
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Proof of Necessity

The identity

A=P + PA = -(PA=_ + _ _P) (3-9)

is needed first. This is obtained by adding and subtracting imP to

AIP + PA.

A_P + PA = AIP + J_0P + PA - jc0P

= -(-J_l - A_)P - P(jc>l - A)

= -A_ *P - PA<

The identity (3-9) is used in (a) to get

PAu_ + A_: *P = q q' + I:R + cD

This is premultiplied by _'_ -i and postmultiplied by A_

-i _-i _-i -I

(3-10)

-I
giving

Og_o_- l P_o -: , i- ID°̂_ -l+ (S-ll)

Then by using (b) P£ is replaced by x_ il + h giving



-I -i
,,'t- q_ A f_ + h'A £+£A <'z_+

*-I -I *-i -i *-i -i
fa + _faA,. DA o
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(3-12)

Since _h'A:::-I £ + g' _*-1 h = 2 Re h?Aa-i

terms, (3-12) becomes

g ; then, by rearranging the

?Ra|_l'A -I _ n _:A *-I RA -1 K

q_A-I 2 -- _ += g - 2,.': Req'A -I (3-13)

,.*-1 -1
where _ = c £ A::. DA,. £ > 0 That ? is greater than zero can be

seen by considering D > 0 as a Hermitian matrix. The matrix D 1 =

AL_*-I DA_ -I is the Hermitian matrix deduced from D by the chonge of

g=A _-I DA,-Icoordinates v = _.-I x Hence, D I > 0 and g'Dlg = _ _ _ > 0.

Adding ":: to both sides of (3-13) gives

T + 2Reh'_.-I_ £ - r g'A *-i RAL,-I £

_,-1 r-12 (3-14)

Since the right side of (3-14) is always positive, the result is

T + 2Reh'A_ "I £ _ g'A _:-1 RA -i- ,, :,, £ > 0 (.)

Therefore, starting with (a) and (b) and assuming that all the quantities

exist, it llas been sho_n that (_) is necessarily true.
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Before going on to the sufficiency proof an additional observe-

tion, due to Kalman (1963), is made. Whenthe pair (A, _) is completely

controllable, i.e., det (g, A_, .... An-l_) _ 0 _ the matrix A c_n be

represented in phase variables with _ = ( 0 0 • 0 I). Let A s =

• Then, for the given choice of A and g the expression _h'As-Ig(s: A)

is written as

-I hl + h2s + " " + hnsn-I

_As _ = det A s (3-15)

This result is needed in t],e following sufficiency proof.

Proof of Sufficiency

The functions 2Rep'S,: -I I -I g and , *-i -Ig A_ DAf_ g

are real rational functions of w with numerators of degree less than

their denominator_ and therefore they go to zero as :_ goes to infinity.

They sre continuous for finite w_and hence they h_ve finite upper and

lower bounds. Let _ be the upper b_,u,:d of g_JA:_*-I DA(_-I g and n be the

lower bound of 2RehtA: -I _ -i* -i.... g - I:_ A RA_ _ . Since D > 0 , then

> 0 He nce

+ 2Reh_Au-I g _ g, i* -i_ - AI_- RA ,_ g

- c gtA .-i DA -I

(3-16)

However, by (*) _.+ n 7- 0. l:ence_ if c = i/2(_ + n)/!., then

-i -i. -i
+ 2Reh_A,_, _ - _: _. A RA_

- a_vAu,-I* DA_:-I g > 0 (3-17)



Let det A
O$

coefficient unity.
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= a(j_) which is a real polynomial of j_ with leading

The last three terms on the left side of (3-17) are

of the form a polynomial in _2 divided by la(jc_)12 This is because

they are either the real part of _ function of j_0 or the magnitude of

such a function. Therefore, the left side of (3-17) can be written as

+ 2Re_A_-I _ _ _ _vg_-l_ RA_-I

c gU_ -I_ D_,-I g =

• 9.

(3-18)
a(j )a(-jL)

where u(,02) is a polynomiol of degree 2n with leading coefficient

However_ by (3-17) u(_ 2) is always greater than zero for all _. u(_ 2)

is a real_ positive, and even function of j_. By the spectrum factoriza-

tion method of the Wiener theory of optimum linear systems (Lee 1960_ p.

376_ u(_ 2) can be written as

u6 2) = ) (3-19)

where _(j_)) is a polynomial in J_ with real coefficients. Since the

leading coefficient of u(_ 2) is T, that of _(j ) is _ , and the degree

of _(j_,_) is n. Therefore, _(jc_)/a(J_) can be written as v(j_)/a(j_) +

_f_ and (3-18) becomes

+ 2Re_A_ "I _ - p_A_ -I_ RA_ "I _ - ¢ _A_ "I_ DA_ -I

(3-20)



v(j: ) is a polynomial of degree at most n-l. If Vl, v2_

are the real coefficients of v(j_ ); define q by

n
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q_ _- _ (vI v2 • . vn) (3-2])

Once _ is known, the mmtrix P is obtained by (a) of the lemma.

Since A is a stable matrix and Q = _ _ + eR + £D is positive definite,

then use of the Liapunov theory for linear systems shows that if A is

stable and Q is positive definite (or semidefinite)_ the matrix P which

results from solving A_P + PA = - Q must be positive definite.

This may seem to be a rather arbitrary definition for _. I_w-

ever_ this _ is now shown to also satisfy (b) of the lena by going back

to the necessity part of the proof. First of all_ as indicated previous-

ly_ the matrix A and vector _ can be assumed to have a certain form.

Referring to (3-15), it is seen that

a(J0_) - _A _ (3-22)

Hence (3-20) becomes

+ 2Reh_Aw, -I g :,_'A -I_ RA_ -I g e _'_o "I_ DA -i

= "I g + -i g + ) (3-23)

Multiplying out the right side gives

+ 2Reh_A_, -I, ._ - ::gOA_o-l_ RA_. -I g - e g_A_,_-l_ DA,_-I,.

_A,,-li" _ -I 2Req_A -I g + 'r (3-24)=' . q q AI_ _ - ..



The _ cancels; and going back to (3-12) in the necessity proof,

0 _-i -i
solving it for _ A_ q q_o _ and substituting this into (3-24)

results in
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_- ,_ -I
\ T 2ReLq_AI_. K)

Cancelling the proper terms and manipulating the remaining ones give

2Re(P_ - h - _ q)_A _ = 0 (3-26)

For (3-28) to be true for all real_jthe vector in the parenthesis must

be zero or

P_ " h - <_ _ = 0

This is just (b) of the lemma. Therefore, by starting with (t)3 a vector

q was constructed and a matrix P found wi_ich satisfy (a) and (b). There-

fore (*) is sufficient for the existence of the solution of (a) and (b).

In the work of Rekasius and Rowland, a result similar to Lemma I

is used. It is actually the case where R - r r =. This can be stated as

a corollary

Corollary I: If the matrix R = r r I, then (_) is written

+ 2Reh_ -I K - :,lriA,:_ -1 _I 2 > 0 (3-29)

This corollary is used in Chapter 4.
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Another special c_se is when _ and r are zero. The lemma then

reduces to K,_Iman_s lemlae (1963) wit|" t!_e result theft the less tLan

sign is replaced by a less than or equal to sign, that is,

T + 2Reh_c-i g _> 0 (3-30)

This will also be of use in what follows.

Now th_,t the le_ma has been proven_ it can be used to prove the

Liapunov. The simplest p_rticular case is treated first, and a theorem

relating the Popov criterion to the Second Method is stated. This par-

ticular statement of the theorem follows Lefschetz (1965) and is used

because it has the condition that -V be positive definite in it. Other

statements of this type of theorem (Kalman 1963) have the condition

that -9 be only positive semidefinite. The definite V is preferred

here since applications are to be made to time-varying systems_ where

-V must be positive definite to conclude asymptotic stability.

Theorem 3-2: A necessary and sufficient condition in order that,

with V I as above_ both V I and -Vl are positive definite for all

x_, _ and admissible f(o) is that the Popov inequality

Re(2_ + j_'_)G(j_,) + _ > 0 (3-31)
k

holds for all real _ together with _ > 0 where

! = _C_b + _v + 2__X
k

When these properties are satisfied the system (2-5) is absolutely

s tab le ..
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The Popov inequality above is obtained from the original Popov

condition (B-l) by letting 2Cry = 1

The proof of the theorem requires putting -VI in a form such that

the lemma can be applied. For convenience the system equations are re-

peated. They are

x = Ax + bu

u = -f(_)

The Liapunov function is

V I = x_Px + fX(o - c_x) 2 + p

"0

but (_ - cox) 2 = y2_2 so that

(2-5)

(Y

/ f(z)dz (3-7)

l}I = _xt(AtP, + PA)x_ + 2x_Pbu + 2y 2 _ =_.....+ _f(o)(c_x_" - y ;)

Substituting f(o) for _ . c'x - _ for y_ and -f(_) for u, and collecting

terms gives

VI "=x_(A'P + PA)x - x_f(_)(2Pb - 2y_c - if,Arc)

_ ($cQb + _y)f(o)2 _ 2y_f(o)o

The quantity X(_) = 2yC_ -f(a))f(o) is now added and subtracted from
k

V1 giving

V 1 = x=(A_P + PA)x - x_f(c_)(2Pb - 2_/ _ c - 5AOc)

- (Pc_b + 5Y + 2_}f((_)2 _ ,_.(cl) (3-32)
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The quantity >.(o) is always positive since y and _ must be positiv% and

(o - f(a))f(o) is also positive. This is because of the inequality
k

0 < f(o)/o _< k Multiplying the inequality by the positive quantity

produces 0 < _ < af(¢_) so that of(o) - f(o)2/k = (o - f(_)/k)
k k --

f(a) _> 0 . Letting A'P + PA = -Q and writing "VI gives

"VI = x_Qx + x'f(a)(2Pb 2¥ :_c_ - _A'S)

+ (f_c'b + _y + 2_-_f(o)2 + >.(_) (3-33)

In order to apply the lemma_-Vl should be forced to assume a

form such that the solution of a set of algebraic equations shows -V I to

be positive definite. The proper form is

-V I = (q'x + f(_)/_F_ )2 + x'¢Dx + k(_) (3-34)

where D is positive definite. If "VI can be made to have this formj it

is positive definite_ and since V is positive definite_ the system is

absolutely stable. Multiplying (3-34) out gives

-V I - x_q q_x + 2f(o)x_q/V_ + f(°)2 + x'c Dx + >.(o) (3-35)

Equating the proper coefficients in (3-35) and (3-33) leads to the follow-

ing set of algebraic equations.

Q = q q_ + cD = -(A'P + PA) (3-36)

2q/,._ ,, 2Pb_ - 2y _ c - gA_c (3-37)

! . _b + _ + _ (3-38)
T k
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The lemma can now be applied to this set of equations 2 and it gives

necessary and sufficient conditions for q and P > 0 to exist. In other

words the lemma gives necessary and sufficient conditions for the exis-

tence of V I and -VI to exist and be positive definite.

In order to use the lemmla the expression for w_ q is needed.

i
xf_ q = P(Tb__ - _ T(2_/ _ c + 6AWe) = Pg - h (3-39)

Now that _, h and _ have been identified, the condition for the exis-

tence of a solution to the set of equations is given. This condition

is now also a condition for the existence of a Liapunov function so that

it is a stability criterion. The condition is

+ 2Re_A_ "I _ > 0 (3-40)

This is (_) with the term 0R = 0

for _' and _ into (3-40) gives

Substituting the proper quantities

and

i _(2y _ c + FA' c_)'Aw i -cb > 0
+ 2Re _ _

I + 2Re(u y i_ -i b + ! _ E'A_ -I b_) > 0 (3-41)
T -- 2

Now A_> was previously defined as A_ = J_l _ A . Therefore,

A _ j_l - _ and A_ -I exists for all real _ since the eigenvalues of A are

all in the left half plane. Therefore, postmultiplying A by A_ -I gives

-I -I
A_, = j,A_ - I (3-42)
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Substituting this into (3-41) along with the expression for I/T, i.e.,

(3-38) gives

,_c_b+ _y + _ + 2Re(_ y c_A_,"I b

or

i -i i
+iec_= j &0 >0

_y + 2_ + Re(2y ; + j_,_)c'&_ -I b > 0 (3-43)

This is the exact expression that appears in Lefschetz (1965, p. 125).

If use if made of the fact that Re(2c_y + J_f_)_7[,_ _ , then (3-43) can be

rewritten as

k + Re(2y_ + j_)(_c _A_,"I _b + _-)j_> 0 (3-44)

But, for the simplest particular cas% the term c_A_-i b + y/j_a is just

the transfer function of the linear part of the system so that (3-44)

becomes

+ Re(2y_ + jc $)G(jL_) > 0 (3-45)
k

which is the inequality which appears in Theorem 3-2. If now the

term 2_ is put equal to one, the result is just the basic Popov in-

equality (3-1), and _ can be found by using the geometrical approach.

Next the relationship between the Second Method and the Popov

criterion is given for the principal case of the system (2.3). The

system equations are

x =Ax+bu

u = -f(o) (2-3)

(y = C_X



and the Liapunov function is

(I

V0 m x'Px + _,/

0

Taking V0 gives

f(z)dz (3-6)
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VO = x'Px + x_P_ + Sf(_)_ - 2_'Px_"+ _f(a)c'_

Factoring out the x gives

(3-46)

-V0 -- -(2Px + _cf(o)) _(Ax - bf(o)) (3-47)

Some people tried to get a positive definite quadratic form in x and
m

f(_) directly from (3-46)(Aizerman and Gantmacher 1964, p. 20). Since

Ax_ - _f can be zero for _ and f(_) not zero, -V0 can at best be semi-

definite if treated as a quadratic form in _ and f. This problem did

not occur in the simplest particular case because of the quantities

and _ also occurring in the -VI equation. However_ the difficulty is

easily avoided by adding and subtracting the term A.(_) = 5(a - f(_))f(a) •
k

The result is

-Vo " S(x,f(o)) + [(_ - f(_))f(o)
k

(3-48)

where the function S(x_f(a)) must be positive definite if V0 is to be

negative definite.

Theorem 3-3: Necessary and sufficient conditions for V 0 to be
positive definite as a function of x for all admissible functions

f(a) and S positive definite as a quadratic form in x and f(o) is

the Popov inequality

Re(_ + j_)G(j_') + l-i > 0 (3-49)
k
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for some_ _>0, somepositive $, and all rea_ _. When
these conditions are fulfilled both V0 and -V0 are positive
definite and the system is absolutely stable.

Aizerman and Gantmacher(1964) point out that (3-49) is necessary

and sufficient for the existence of a Liapunov function constructed by

the above S-procedure_ but that there exist other Liapunov functions of

the form V0 which cannot be determined by the S-procedure. However,

Yakubovich (1964b) has shownthat there does not exist an absolutely

stable system of the form _-o7"__ for--_:-_w,_,_.+_,..,,_..........#o_"_ =hQolute stability

can be established by using a Lurie type Liapunov function_ but cannot be

established by using the S-procedure.

The proof of the theorem proceeds in an entirely similar manner

to the previous case. Putting the system equations into (3-46) gives

V0 = x_(A'P + PA)x - 2x'Pbf(o) + _f(_)c__Ax_

_ _f(_)2 (3-50)

Letting A_P + PA _ -Q, adding and subtracting k(_), and writing -V0 give

"V0 = _Q2! + (2b_P - _=A- _)f(_)_

+ (_ + _b) f(a) 2 + _(o) (3-51)
k

Again "V0 should have the same form as given in the previous derivation_

i.e._ (3-34). Equating the like terms in (3-35) and (3-51) results in

the equations

Q = _D + _ _u _ -(A'P + PA) (3-52)



2ql_ = 2Pb - BA_c - _A'c- [)c_ (3-53)
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-- I
_ + _c_b (3-54)

so that for D > 0_ the solution of this set of equations guarantees

absolute stability as before. The lemma requires

+ 2Reh?A -i
_ _ _ > 0 (3-40)

T + 2Re(½ T(_A_c + _:,c_)_A_-I_ _ b__ > 0 (3-55)

or

I + Re(_c,AA -i b + _c'A_ "I b) > 0 (3-56)

Making the substitutions for i/_ and A_ -I gives

_?Aw- I+ _c;b + Re(_c_ju_A_ "I b - _b + b) > 0

or

+ Re(jw_ + g)c'_: -I b > 0 (3-57)
k -

cI -Iwhich aBain is l_fschetz_s result. Since _ A_j b = G(j_)_ this can

be written as

+ Re(jco B + 5) G (j_,) > 0 (3-58)

which is the inequality in the theorem. Letting g = I again gives the

basic Popov inequality (3-1).

The basic Popov criterion and its relationship with the Second

Method of Liapunov has now been given. In the next chapter the use of

these results for time-varying systems is discussed.



Chapter 4

FREQUENCYCRITERIAFORTLME-VARYINGSYSTEMS

4.1 Introduction

In this chapter Lemma 1 is used to derive various frequency

domain stability criteria for a class of nonlinear_ time-varying sys-

tems. The second section includes the work of Rozenvasser (1963)_ who

treated the principal case_ and this is extended to the simplest par-

ticular case. The Liapunov function used in this section is a quad-

ratic form of the state variables.

The third section examines the work of Bongiorno (1963)_ Sand-

berg (1964), and Narendra and Goldwyn (1964) on the subject of time-

varying systems_ and shows how their work is related to the Popov

criterion. The geometric interpretation of these various results is

given in the fourth section. The fifth section consists of two examples

illustrating the previous results. The frequency domain criteria are

applied to the equation which arises from a RLC circuit with time-vary-

ing capacitance_ and also to the nuclear reactor kinetics equations.

The last section considers how the integral term can be put

back into the Liapunov function. This results in extensions of the

previous results of the chapter. The RLC circuit example is reworked

to show when these new results are applicable.

42
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4.2 Stability of Time-Varying S_stems Using the Popov Criterion

The Popov criterion was shown to be valid for the principal case

of the time-varying system by Rozenvasser (1963). The development is

similar to that of the previous chapter_ except that in this case the

quantity _ is zero. Thus_ the Liapunov function connected with this

development is just a quadratic form of the state variables. The reason

for eliminating the integral term is that the integral term is time-

varying_ and only creates additional _om_1_o+_^______._whei_ the _ime deriva-

tive is taken.

The system equations are

=Ax +bu

u - -f(o,t), 0 _< f(o,t)/_ _< k (2-3)

(_ -, C_X

and the Liapunov function is

V = x'Px (4-1)

Taking the time derivative and adding and subtracting >.(_t) - f(_t)

(_ - f(_,t)/k) > 0 to it gives

= x_(A'P + eA)x - 2x_Pbf(_,t) + f(_,t)(_ - f(a,t)/k) - _(_,t)

(4-2)

Letting AIP + PA = -Qj _ m _clx_and writing -V gives

-V = x=_ + x_f(_,t)(2Pb - c_ + f(o,t)2/k + _(o,t) (4-3)

Once again -V should take the form of (3-34) to insure that it is

positive definite. Equating the like terms in (3-35) and (4-31 gives

the following equations



Q = q q_ + _ D u -(A'P + PA) (4-4)

2q/\_ = 2Pb - c (4-5)

T - k (4-6)

44

Applying Len_na I with _ = kb and h _ kc/2 gives

or

-i
But _IA_

I kc_A -i kb > 0k+ 2Re _

i + RectA -I b > 0 (4-7)w-

_ G(jc:) so that (4-7) can be written as

i + ReG(j_) > 0 (4-8)
k

(4-8) is Just the Popov criterion for B m 0 as given in (3-I)_ and has

the same geometric interpretation as given in Fig. 4.

The derivation is also repeated for the simplest particular case,

since this was not considered by Rozenvasser. The system equations are

_=Ax+bu

u = -f(_, t)

= f(o,t) 0 < f(_,t)/o

a=c_x-y_

<k

(4-9)

and the Liapunov function is

v = x_ex + _,(a- c__x)2 (4-10)

Taking _and adding and subtracting _(_jt) leads to the equation
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45

+ 2__ f(o,t)2 + >_(o,t)
k

(4-11)

Comparing (4-11) with (3-35) and applying the usual lencnawith g - kb

h _ k _ y c__, and I/_ - 2CO//k gives

200/ + 2Re _ _ c'_-i b > 0 (4-12)

But Re_,.(2o_/) _ 0. Adding this to (4-12) gives
jw

or for 2;_ = i

2_ + Re2C_f(c_A_ "I b + ._) > 0 (4-13)
k -- -- j_,,

i + ReG(J_ ) > 0 (4-14)
k

Hence_ the Popov criterion of 8 _ 0 holds for the case of a nonlinear

time-varying element in the simplest particular case also.

4.3 Other Work

There has been work by other investigators which gives essen-

tially the same results. Bongiorno (1963) derives his results for linear

systems with a periodic variation of the time-varying element 3 using a

combination of Floquet theory and Fourier analysis. Sandberg (1964) de-

rives his results using functional analysis. Narendra and Goldwyn (1964)

use the Second Method of Liapunov to get similar results. This section

shows that these results can be derived using Lemma i_ and they are

essentially the same as the Popov criterion.
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In the work which follows, only the principal case is considered

and the nonlinearity f(_,t) is assumedto be in somesector [kl, k2], and

it is written as f(o,t) -- k(o_t)_. Putting the system equations (2-3)

into the time derivative of the Liapunov function (4-1) gives

-_(A_P+ PA)_ + 2x_Pbu (4-15)

Letting AWP + PA = -Q and replacing u by u -- -k(_t)a gives

= -x' (Q + 2Pt_!c_k(_, t))x (4-16)

Analogous to the previous work, -V is forced to be positive definite.

-V = x _(e D + (q + k(a,t)c_ (q + k(a,t)c_) _

+ (k2 - k(o,t))(k(a,t) - kl)c c')x (4-17)

This is the V used by Narendra and Goldwyn (1964).

expression out gives

Multiplying this

+ (k I + k2)c cTk(_,t))x (4-18)

Comparing (4-16) and (4-18) gives the following set of equations

Q = _ D + q q7 _ klk2 c c = (4-19)

1

Pb = q + 2 (kl + k2) c (4-20)

The corollary to Lemma 1 can be applied to this set of equations getting
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I -i
I + 2Re_(kI + k2)cTA.... b_+ klk 2[c_A_-i b12 > 0 (4-21)

or

1 + (k 1 + k2)ReG(Ju> ) + klk 21G(j_) 12 > 0 (4-22)

This is the result achieved by Narendra and Goldwyn. It should be

pointed out that (4-21) is true only when (4-19) is positive definite.

The results of Bongiorno can be obtained by setting up the sys-

tem equations such that k I _ -k 2 . In that case (4-22) becomes

or

I - k22[G(J_)[2 > 0

k21G(j_)) [ < I (4-23)

Bongiorno attained this result by means of a completely differ-

ent derivation.

The results of Sandberg can also be obtained from (4-22). First

divide (4-22) by _(j_2 = G(j:_')G(-j_) and then add and subtract

l(k I + k2 )2 The result is

I k 1 + k 2
+

G (ju_)G(-j_:) 2

i I

( )kjG'%--v+ G(-ju_) )

+
(k I + k2 )2 (k I + k2 )2

4 4 + k lk2 > 0 (4-24)

This can be rewritten as

i k I + i

(_ + 2 k2) (G(-j_') +

k I +
2 k2)

(k 2 - kl)2

4
>0



or

I_I + kl +2 k2 i2

(k2 . kl )2
>

4 (4-25)
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The final result being

k 2 - k I G(j_)

k I +
I + ( k_)G(J_)

2

< i (4-26)

which is Sandberg_s criterion.

It is also seen that_ by letting k I = 0 and k 2 = k in (4-22)_

the result is

ReG(jt_>) + I > 0 (4-8)
k

which is Just the Popov criterion derived in section 4.2.

Actually (4-22) can be derived in another manner, that is by

just using the standard Popov equation and rotating the nonlinear

sector. Starting with the original set of equations

_-Ax+bu

u ,= -f(_,t), 0 < f(a,t)/o < k

(y _ CQX

G(s) = c__(sl - A)-I b
m

(2-3)

The nonlinear sector is rotated by the transformation f = fl-klo-

This means that k I _ fl/_ _ k + k I = k2 or k = k 2 - k I . Substituting

this into (2-3) gives



x_"= AlX + b_uI
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uI = -fl(_,t)_ kI _<fl(_3t)/_ _<k2

(4-27)

-i
el(s) - c'(sl - A I) b

where AI_ (A+ klb c _) and u I = u - kl_ To find the relation between

G(s) and Gl(S)_ the equation relating A and A I is used in the original

system equations. Taking the Laplace transform gives

(sI - A)_(s) - bu(s)

(sl - A I + k I b_ c')x(s) = bu(s)

x(s) + (sl - AI )-I k I b c'x(s) = (sl - AI )-I b__u(s)

c__x(s) + c_" (sI - A1 )-1 bklC'X_(s ) = c 3 (sI - A1)-I b_u(s)

or

o(s) + Gl(_)kl_(S) = Gl(S)U(S)

G(s) = a(s)/u(s) =
Gl(S)

i + klGl(S)
(4-28)

Putting this into the Popov expression (3-11) along with k = k 2 - k I

gives

1 GI(J, )
+Re > 0

k 2 - k I I + klGI( j )

Rewriting this inequality gives
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I i GI(J' ) I GI(J_)

k 2 k I + 2 1 + klGl(j_ ) +_ I + klGl(-j_ ) > 0

Multiplying through by (k 2 kl)(l + klGl(JU_))(l + klGl(-Jw)) does not

change the inequality_ and_ by suitable grouping of termsj gives (4-22).

The next section gives the geometric meaning of these various criteria.

4.4 Geometric Interpretations

The following geometric interpretations can be put on (4-23)_

(4-26) and (4-8)° For (4-23) it is obvious that the system is stable if

the frequency locus is always inside the unit circle (Fig. 5a). (4-8) is

just the usual geometric interpretation of the Popov criterion with

_ = 0 (Fig. 5d). (4-26) requires some work to interpret.

For (4-26) there are two cases to consider_ k I > 0 and k I < O.

When k I > O_ the system is stable if the locus of G(j_) is always outside

the circle of radius (k 2 kl)/2klk 2 centered at (-(k I + k2))/2klk2_0 )

(Fig. 5b)_ and for k I < 0 the system is stable if the locus of G(j_) is

always inside the circle of radius (k 2 - kl)/2klk 2 centered at (-(k I + k2)

/2klk2_0)(Fig. 5c). This result is obtained by first squaring (4-26)

and cross multiplying_ getting

I 12kl + k2 G(j_) >
I+ 2

(k I - ko) 2

4 _ I G(J_J) I

Letting G(j0') = x + jy results in_ after sufficient manipulation_ the

inequality

i + (k I + k2)x + klk2X2 + klk2y2 > 0
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a) -k J f(_,t)/a _ k b) k I < f(a,t)/_ _< k2

kl>0

c) k I < f(_t)/o _< k 2

kl<0

d) 0 _< f(o_t)/o ! k

Fig. 5. Stability Criteria for Time-varying Systems.

Examples of Stable Systems.
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When this is divided by klk2. there are two results

> 0_k I > 0

1 kl + k2 x 2 2
--+ x+ +y
klk 2 klk 2 < O_k I < 0

If the square is completed in x_ the result is

kl + k2)2 > (k 2 2
(x + 2klk 2 + y2 " kl) (4-29)

< 4(klk2 )2

If the inequality signs are replaced by equality signs_ (4-29) is

the equation of a circle with the stability information obtained as

indicated above.

All four geometric interpretations are illustrated in Fig. 5.

It may be that one of these versions of the stability criterion is

easier to apply than the others for a specific problem. This is illus-

trsted in the examples which follow.

4.5 Examples and Discussion

In this section two examples are worked which illustrate the

above stability criteria. The first example is the _qthieu equation_

which arises from a series RLC circuit with a periodically varying

capacitor. One reason for using this equation is that it has been

studied extensively (MeLachlan 1953)_ and its exact stability properties

are known. This eilables a comparison to be 1_ade with the sufficient

results which are obtained here. The second example is concerned with

nuclear reactor stability.
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The differential equation for this example is

53

+ 2 _ _ + (i - 2q cos 2t)x = 0

This equation can be put into matrix form in two ways:

Case I

il

_2

0 1

-i -0.i

x

+

x 2

o

I :

Case 2

_2

_- 0 1-
!

= I
I

I I

k-(l-2q) -2(_

l o7
I

+

½

2q(l-cos 2t)x I

The transfer function for Case i is Gl(S ) = i/(s 2 + 2_s + I) with

-2q _< fl(xl,t)/xl<2q3 while for Case 2, G2(s ) = I/(s 2 + 2_s + I 2q)

with 0 _< f2(xl,t)/xl < 4q. For Case I the Bongiorno criterion (4-23)

is used and for Case 2 the Popov criterion (4-8) is used.

Ca se I

KIG(J' )I < I (4-23)

[G(j: ) [2 i
- (i 2)2 + 4"2' _:

Setting the derivative with respect to _ of the denominator of

[G(J_) [2 equal to zero, to find out the frequency at which it is
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2(1 - w2) 2w + 8_ 2 oJ = 0

t, ,, 0 _ > •707

f--
w ,,_I - _2 _ < .707

Looking only at the low damping case and substituting

w = _i - _2 into IG(jw) I2 gives

IG(j_) 12 . I = I

(2__)2 + 4,_2(i - 21,2) 4_2(i . _2)

Therefore IG(Jw) I max = 1/2 "__ .

k == 2q gives

Putting this into (4-23) with

2q < 1
/.-

2._",1 - C2

N/q < ." 1 = _2
'2, L,

Therefore. if q is less than C\__ the system is known to be stable

Case 2

1
+ ReG(jt,) > 0 (4-8)

i 1

4-'q + Re 1 - 2q - . 2 + 2:>j_. > 0

Calculating the real part gives
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i 1 2q - 2
4-_+ Re (I + 2q - _2)2 + (2_)2 > 0

2)2Multiplying by 4q((l - 2q - - + (2_) 2) does not change the inequal-

ity_ and results in the expression

(__,2 + I)2 . 4q2 + 4_2 2 > 0

Finding t|Le minimum of value of this with respect to _ again gives

_ = _i - 2_2 for _ < °707. Putting this into the previous expression

gives

_2)(-i + 2_ 2 + 1) 2 - 4q 2 + 4_2(I - 2_ " 0

q2 < _2(i _ _2)

which is the same result as Case I_ as it should be.

For this si_nple example there does not seem to be any notice-

able advantage of one stability criterion over the other. However_ for

higher order equations of the type

(n) (n-l)

x +a x
n

+ . . . + a2x + al(t)x - 0

the stability criterion given by (4-23) is easier to apply when find-

ing how large the amplitude variation in al(t ) can be _q_ile being sure

the system is stable. This is seen by observing the differences Letween

C_ses 1 and 2. For higher order systems the graphical procedure is
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usually followed in order to get the maximum of IG I or the minimum of

the ReG. In Case 2 the transfer function G2(J:_ ) has the parameter q

in it_ and solving the problem graphically is a trial and error proce-

dure. For a given value of q_ ReG(j_0) is plotted_ and it must be to

the right of the vertical line through -i/4q. Therefore, for different

values of q_ not only is the locus of G(j(_) different_ but the Popov

line shifts also. Finding the value of q when the locus and the Popov

line a_ La[iguilt is _ du_Ji_L_........... L_J__ dLLU--_error _Lu_=_=. _,,-_=_= i

G(jt) does not have q in it and can be plotted once and its maximum

value determined. Therefore 3 for the class of systems given above, the

Bongiorno criterion has a definite advantage. For other classes of

systems_ one of the other criteria may have a similar advantage.

The results of the example presented here can be compared with

the existing results on the M_thieu equation_ to see how close the

criteria of tILis chapter come to the necessary condition for stability.

For _ = .05, the above results give q < .05 as being sufficient for

stability. The actual stability boundary_ as calculated in Phillips

(1963)_ is q = 0.I so that the sufficient condition given by the Lia-

punov-Popov approach is only half the actual maximum value. Better

results are obtained for systems with higher damping than _ = .05.

Example 4-2

This example treats a nuclear reactor operating at some given

reactivity level_ and it is assumed that this reactivity level is

perturbed. This perturbation is treated as a time-varying coefficient_
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and (4-23) is used to find a condition on the amplitude of the variation

which will insure sta!,ility.

The reactor equations are (Weaver1963)

6

n=gk- 9 n + ,' kiC i
i=l

Ci -_- n - kiC i

The reactivity is assumedto be of the form

5k = 5ko(l + f(t))

The equation for 6 is now

6

_k 0 - _ %-_
n+ ,

i=l

t_kof (t) n

kiC i +

The complete set of equations written in matrix form can be represented

by

= + b_f(o,t)

O" =: C_X



where

A

k0L -- _

kl A2 k3 'k4 >'5 k6

>i I_ ->'i 0 0 0 0 0

_2/_ 0 -k 2 0 0 0 0

B3/_ 0 0 -_-3 0 0 0

84/_ 0 0 0 -k4 0 0

e5/_ 0 0 0 0 -_'5 0

e6/_ 0 0 0 0 0 -k 6

58

and

b' = c' = L 1 0 0 0 0 0 0 i

In order to use the stability criterion the expression G(s) =

b must be calculated. It can be shown that this expression is

-I
G(s) = c_A s b =

s +

6

" _k0 V ki_i/_
/

c=l s + A i

If uranium-235 is used in the reactor_ the constants are (Weaver

1963) _ = .0064 and



59

i >% f_i

i 0.0124 0.00021

2 0.0305 0.00140

3 O.iii 0.00125

4 0.301 0.00253

5 1.13 0.00074

6 3.01 0.00027

The value of _ is 10-4 seconds and assumethe steady state value of

reactivity _Jk0 is -10-3 .

The stability criterion is (4-23)

kIG(j_) I < I (4-23)

and the maximumvalue of _(J_)l for the given constants is 0.I. There-

fore O.Ik < i or k < i0. But k = I_k0 f(t)I/I. Putting the proper

quantities in this expression gives !f(t) l < I . Therefore the system

is sure to be stable for any changeof reectivity such that the new

reactivity is between 0 and -2 x 10-3

Of course this gives a gross account of the stability region

since effects such as feedback effects of the temperature on the reac-

tivity were not considered explicitly_ but were lumped together as a

time-varying coefficient. Better results should be obtainable by ad-

joining the equations describing these effects to the above set of

system equations.

4.6 Retaining the Integral of the Nonlinearity in V

In order to try to improve the sufficient conditions for sta-

bility derived earlier in this chapter_ the integral of the nonlinear



term is put back into the Liapunov function. The work here follows

Rekasius and Rowland (1965) and is for the principal case of (2-3).

The starting point is the usual Liapunov function for the

principal case

V = x'Px + _ / f(z,t)dz
/

0

(3-6)
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The time derivative is

I _f(z,t) dz (4-30)

o

p a_ f
The idea is to put bounJs on _--dz in various ways while insuring

./ 0 t

0

that -V is negative definite. There are three cases which can be

considered.

Case I

G

/ bf(z t) dz < ';,ic_2/ J --

6 bt

(4-31)

Case II

(Y

,'-Sf(z t) ¢_fff(a,t)s ' dz <
C' _ t --

0

(4-32)

Case III

_ _f(z,t) dz < _3f(a,t)
,! ct --

0

(4-33)
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The three cases can be combined in different ways, but this only adds

anot!:er degree of confusion to the calc_lations since it is not clear

how muchone case should be weighted compared to the others.

The equations for -V are obtained for each case by adding and

subtracting k(a_t) and the right hand side of (4-31), (4-32)_ and (4-33)

to (4-30). The result in each case is

Case I

1 f(o7 t) 2+ (gc_b + _) + ?.(o,t)

+ (9.qi_2 _ B /r%f(z,t) dz)
,j dt
0

(4-34)

Case II

-%' = x'_ + x_(2Pb - _A'c - _=<2c - c) f(o,t)

1 f(_t)2 + k(%t)+ + D

+ (p_2_f(a,t) -

(y
_f(z,t)

/ 3t
0

at) (4-35)

Case III

-V = _'Q_x + _(2Pb - _'! c) f (_, t)

1
+ (fc_b - _ _3 + [ )f(_;t)2 + k(a_ t)

+ (_¢J3f2(_, t) - _ F 'Jf(z,t)
ot

0

dt) (4-36)



Similar to the previous development; if -V is of the form
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-V = (q_)_i+ f(g,t)/_f_) 2 + x_eDx + ?.(_,t)

+ (Positive term) (4-37)

then by comparing (4-37) to (4-34), (4-35) and (4-36) s a set of

algebraic equations is obtained which can be used with Lemma 1 to obtain

stability criteria. The equations are

Case I

Q = _ _' + e D + [_c_1 ! !'

I i

= _c_b +

(4-38)

Case II

Q= qjl _ +c D

2q/\_ = 2Pb - f_A_c - c - _2 c

i I
--= _clb +--
T k

(4-39)

Case III

Q= qq_ +e D

2q!,_ = 2Pb- _A_c_-c (4-40)

1
I_.:, _c_b__ _ f5¢13+k"

The application of Lemma 1 to these equations results in the following

stability criteria.

Case I

i + Re(l + J_)G(J_') - @qllG(ju)12 > 0
k

(4-41)



Case II

_i + Re(l + P_2 + J_)G(j_) > 0
k

(4-42)
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Case III

I

- _cy3 + Re(l + jw_)G(j_) > 0 (4-43)

Therefore_ if some _ can be found such that one of the inequalities

(4-41)_ (4-42)_ or (4-43) holds for all real _ , then the system (2-3)

is absolutely stable.

Since the Bongiorno type of criterion _,ad an advantage for

certain systems in the above work_ the analogous case was also inves-

tigated here. This advantage did not carry over however_ and the results

are more complicated than those given above. Thereforej they are not

included here.

An example is now given which illustrates when the above cri-

teria give improved results over the previous case (4-7). The same

equation as in Example 4-1 is considered.

Example 4-3

The equation is

+ 2_ + (i - 2q cos 2t)x = 0

In matrix form this is

x 2

0

-(i - 2q)

I xl] 0
!

+

x 2 1

2q(l - cos 2t)x I
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To use the abovecriteria, the numbers91, rs2, and <_3must be calculated.

f(xl,t ) = 2q(l - cos 2t)x I

0 _<f(xl,t)/x I _<4q

df(xl, t)

_t = 4q(sin 2t)x I

/ Xl <_f(z.t)
_t dz = 2q(sin 2t)Xl 2

0

For the three cases (4-31)3 (4-32), and (4-33), the inequalities are

Case I

2q(sin 2t)x12 J $_ixl2

ql = 2q

Case II

2q(sin 2t)x12 _ _2x12q(l - cos 2t)x I

sin 2t

6"2 = max 1 - cos 2t = _

Case III

2q(sin 2t)x12 = r_34q2(l - cos 2t)2x12

_3 = max

sin 2t

2q(l - cos 2t) "2 = _

The stability criterion for Case III, (4-43)_ can only be true for

_3 " _ if _ - O. Therefore this criterion reduces to the previous casej
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Re_92G(J_) > 0

The transfer function G(jo') is

G(j_) =
I - 2q - _2 + j2w

1 2q 2

(! - 2q - w2)2 + 4_2w2

The sign of ReG(jw) changes as w goes from zero to infinity so that again

this criterion is no good unless _ _ 0.

This just leaves Case Io The criterion in this case is

i + Re(l + jw_)G(Jm) _2 2_ _ _, qlG(J_)I
k

>0

The quantities IG(J_ )12 and Re(l + jP_ )G(jc_) are

IG(jw) 12 = 1

(I - 2q - w2) 2 + 4_2w 2

Re(l + jfk_)G(Jw) =
I - 2q - _r2 + 2_Qw 2

(I - 2q - w 2) 2 + 4_2w2

so that the criterion is

1
--+
4q

i - 2q - _.2 + 2_ 2 _ 2q_,

(i - 2q - w2) 2 + 4_2w 2

> 0
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(I - 2q - .2)2 + 4_2 2 + 4q(l - 2q - _2)

+ 8_2_q - 8,_q2 > 0

This can be rearranged as

4
_' + _2(-2 + 4_ 2 + 8r_q) + I - 4q 2 - 85q 2 > 0

Finding the frequency at which this is minimum gives _2 = I - 2_ 2 4_q

2
or, when 1 - 2_ - 4g_q is negative, f_:= 0. For the case where _, = 0

the criterion is

i - 4q 2 - 8_q2 > 0

or

2 i
q =

4 + 8,_

Therefore q is maxi_num when '_ = 0 and the maximum q = 0.5 for _ > .707.

2
In the other case substituting for _ leads to the inequality

-(i - 2_ 2 - 46_q) 2 + i - 4q 2 - 8!_q2 > 0

From the previous example_ the maximum value of q using the Popov cri-

terion was q < 0_05 for _ = 0.05. If these values are substituted into

the above expression then it can be seen that again 6 must be zero for

the above expression to be satisfied ui_less q is made smaller than 0.05.

Therefore_ the inclusion of tlte integral term into the Liapunov

function is no help at all for the equation under study. One reason

for this is that the frequency of the time variation is at a critical



67

value. This equation is the dampedMathieu equation which has been

studied_ by other means, by McLachlan (1953) and Cunningham(1954). One

of the results of these studies is that, if the frequency of the cosine

term is twice the natural frequency of the constant part of the equa-

tlon_ then this is a critical value as far as stability is concerned.

This holds true for all higher even harmonics of the natural frequency.

Therefore, the stability does not depend on the rate of variation di-

rectly, but on the relation of the rate of variation to the natural

frequency of the equation.

This brings up the question of whether the frequency criteria

of (4-41)-(4-43) are any good at all. The answer is that these cri-

teria should be applicable whenever the frequency of the variation is

less than twice the resonant frequency of the equation. In higher

order cases this should hold if the frequency of the variation is less

than t-wice the ;latural freque_cy of any do_,inant coml_lexroots. This

is just a conjecture, however.

Case I of the above problem is now reworked with the frequency

of the variation decreased by half. Everything is the sameas before

except that cos 2t is replaced by cos t, which then changes the value

of _I to _i _ q" The stability criterion is

1 + Re(1 + Jf_o)G(jt_) - q_JG(jwl2 > 0
4q

or substituting the transfer function into this inequality gives

I I - 2q - ,2 + 2_i,_2 - q_

4-_+ > 0
(i - 2q - _,_2)2+ 4_2u2



Manipulating this expression gives
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4 - 2
_ + _2_-2 + 4_ + 8_q) + i - 4q2 - 4_q2 > 0

which is minimumfor _,2= 1 - 2_2 - 45_q .

equation gives

Substituting this into the

-(I - 2_2 - 4_q) 2 + I - 4q2 - 4_q2 > 0

Let _ = .05. The inequality becomes

-.04_2q 2 + _(.398q - 4q2) + .01 - 4q2 >0

It can be shown that the maximumvalue of q which satisfies this in-

equality is q _ .0856 when _ i 7.93. Therefore_ the sufficient con-

dition for stability is q < .0856 which is an improvement over the

previous result of q < .05. Therefore_ the inclusion of the integral

term into the Liapunov function does lead to an improvement in the

stability criteria if the time variations are slow enough.

This chapter developed the Popov criterion for time-varylng

systems_andshowedhow the Popov criterion is equivalent to the work

of Bongiorno_ Sandberg, and Narendra and Goldwyn. The basic Popov

criterion was then extended by following the work of Rekasius and Row-

land, and this extension was shownto give improved results when the

time variations are sufficiently slow.

Nowthat stability criteria have been developed for nonlinear

and/or time-varying systems with one nonlinear and/or

element_ the case of manysuch elements is considered.

in the next chapter.

time-varying

This is done



Chapter 5

SYSTE>_WITHMANYNONLINEARAND/ORTIME-VARYINGELEMENTS

5.1 Introduction

This chapter contains extensions of the previous work to

systems with more than one nonlinear or time-varylng element. These

are the types of systems which are described by equations of the form

(2-1). Obtaining stability criteria for these systems comprises most

of the original contributions of this work.

The second section starts with the principal case of the sys-

tem with m nonlinear elements. A Liapunov function, analogous to

the one used in Chapter 3, is used, and the result is a set of alge-

braic equations, which must have a solution, if V and -_ are to be

positive definite. This leads to an extension of the matrix-inequal-

ity method so that it can be used for systems with more than one non-

linearity. A new ler_ma, which is a generalization of Lemma i, is

proven. This lemma is then used to get the stability criterion, the

result being that a matrix which is a function of real frequency must

be positive definite. For one nonlinearity this reduces to the pre-

vious work. A comparison of the stability criterion with previous

work in this area is made, and three examples are worked illustrating

the various features and short-comlngs of the criterion.

In the third section the criterion is extended to time-varying

systems. Results,completely analogous to those obtained in Chapter 4,
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are obtained.

of an example.
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The application of the criteria is illustrated by means

The fourth section contains a discussion of the particular case.

It is shownthat, in general 3 the particular case cannot be extended

for the systems with manynonlinearities. However, one particular

class of systems which does permit an extension is given, and a sta-

bility criterion is derived and its use illustrated by an example.

The last section contains conclusions.

5.2 Multiple Nonlinearities--Principal Case

In this section the previous results are extended to obtain a

frequency domain criterion for the principal case of the system with m

nonlinear elements. The time invarlant case is considered in this sec-

tlon, while the time-varying nonlinear case is considered in the next.

The system equations are given by (2-1) and are repeated here

for convenience.

- Ax_- B

_f(c;)__ = Ifl(°l ) f2(J2) - • • fro(ore), (5-i)

_a ,,, C'x_ 0 _< fi(o_i)/_ i _< k i , i = i, ..._ m

By analogy with the previous work, a Liapunov function is chosen to be

of the form

f'--

/ f(z__) _ dz (5-2)V = x_Px + I
j

0



where _ _ diag (_i' _2'

gives

• . , em).
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Taking the time derivative of (5-2)

- x'(AgP + PA)x - 2x_PBf(_ + f(_) _ a (5-3)

Substituting for a gives

V - x'(A_P + PA)x - 2x_PBf_ + f_)_e(C_Ax - C_Bf_))

Writing -'_"and =_,,_-_"...._.._ _°"_*_=_ng............th_ term f_(a_(G - K'If(G)) gives

-V = xg_ + x' (2PB - A'C_)f(_)

+ f(a_) '_C'Bf_ +_f_q) = _ - K-If(o_)) (5-4)

where K - diag (kl, k2, . o., km). Letting f(a)'(__ + K-If(o__)) - k(a_)

and rewriting (5-4) gives

-V = x'_ + x'(2PB - A_C_ - C) f(o_)

+ f(__)_(½Cc _B + B_c_)+ K'l) f(_

+ X(_ (5-5)

The symmetric part of the quadratic form f'_C_Bf is used_ since a

quadratic form is completely specified by its symmetric part.

In a manner completely analogous to the previous work, it is

desired to put -V in the form (Sultanov 1964)

-V " (Q_x_ + Tf_(=)_)_ (q2x' + Tf(o__))

+ x _ c Dx_ + _.(_) (5-6)
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-V = x_Q2Q _ + 2x_Q2Tf(_) + f(o_)'T_Tf(o_

+ x__ c Dx_+ x(_ (5-7)

Comparing (5-7) and (5-5) results in the following set of equations

Q = Q2Q_ + c D = -(A_P + PA) (5-s)

2Q2T ,, 2PB- A'_-_- C

T'T ,, I(_C_B + B_C_) + K -I

(5-9)

(5-1o)

In order for the first three terms in (5-5) to be a positive definite

form in x and f_j it is necessaryj but not sufficientj for the matrix

T'T to be positive definite. Therefore 3 if (5-8) and (5-9) can be

solved for Q2 and P > 0_ then V and -V exist and are positive definite_

and the system (5-1) is absolutely stable. The conditions for the

existence of the solution of (5-8) and (5-9) can be found with the help

of a lemma_ which is an extension of Lemma i of Chapter 3. The

statement and proof of this lemma follows next.

Lemma 2: Given a stable_ n by n_ real matrix A; symmetrlc,

n by n_ real matrices D > 0 and R > 0; n by m, real matrices
G of rank m and H _ 0; an m by m_ real matrix T_T > 0; and

scalars __> 0 and 0_ where e is such that the right hand side

of equation (aa) below is negative definite; then a necessary

and sufficient condition for the solution as a symaaetric_ n by n,

real matrix P > 0 and an n by m_ real matrix Q2 of the system

PA + A_P = - Q2Q_ - cD - oR (aa)

Q2 T = PG - H (bb)



is that _ be small enough and that the matrix
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T_T + 2HeH_Aw,-IG - oG_Aw "I_ RAw_-I G (**)

is positive definite for all real _0.

The notation HeM means the Hermltian part of the matrix M.

Proof of Necessity

The proof again starts by using the identity

A_P + PA = - (PA_ + A_*P) (5-n)

in (aa). This substitution results in the equation

PA_ +_,>ep . Q2Q_ + pa + _ D (5-12)

(5-12) is premultiplied by G_Aw -I* and post-multlplied by A_'IG

giving

-i* -iGG_Au: PG + G_PAo = G'Aw,-le QmQIAw-IG

-ie -i -Ie -i
+ oG'_ RA_, G + e G_A_ DA_ C (5-13)

Using (bb) to substitute for PG gives

G'Aw -I* Q2 T + G'Aw-le H+ I _ "iG
T Q2Aw

+ H'A_-IG . G_A_ -I* Q2QI4o-IG + oG'Aw -I* RAw-IG

+ eG'A_ "I* DAw-I G (5-14)

Rearranging terms gives
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2HeH_Auo-IG- #G,AL,-I_ RAu-IG

- G_A_-I_ Q2Q_Aw-IG- 2HeT'Q_A"IG + A

The term A -- _G'Aw-I_ DA_'IG is positive definite.

(5-15)

To see that this is

true, first recognize that, as before, D 1 m Aw "It DAw "I is positive

definite since D is positive definite. Since D I is positive definite,

it can be written as the product of two nonsingular matrices E+E so that

u+_ E i_ ai_ itby u uo[LsiHgula_ ma_Lix a[tu G i_ aLt , by mG_DI G - _.

matrix of rank m _ n . Therefore, the vector 5 = E_ is only zero if Z

is zero, and _x'x__ z_G_E_EG_ is greater than zero for all Z _ _0 and equals

zero only for Z = _ , so that G_E_EG is positive definite. Therefore,

EG'A_ -le DAu,-IG - _ is positive definite.

Adding T=T to both sides of (5-15) leads to

T_T + 2HeHTAu,-IG - O G_ "le R_'IG

= (QIAw,-IG - T)* (Q_-IG - T) + (5-16)

But if A is a complex matrix, then A*A is at least a non-negatlve definite

Hermitian matrix. Therefore, the right side of (5-16) is positive de-

finite so that the left side must also be positive definite. The left

side is just (_'_) so that the necessity of that condition is proved.

Proof of Sufficiency

.Ie
The matrices T_T + 2HeH_-IG - _I_G'Au RAu_-IG and G_A -I_ DA-IG

are positive definite for all _ . The value of c can always be chosen
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e-i -i G- _G_A_ DA_ is also positive definite

75

Let a(s) I det A s which is a real polynomial with leading co-

efficient unity. The elements of the last three terms of the above ma-

-I andtrix all have the term I/a(j_)a(-j_) in them, coming from the AW

_1*
A_0 terms. The above matrix is also positive definite and Hermitian_

and, as indicated above, it can therefore be written as the product of

a complex matrix and the adjoint of that complex matrix. Therefore,

the matrix must take the following form

T_T + 2HeH_Aw-IG - OG' *-i _IG _ _G_Au-I * DA_-IG

= (T + 1 i V(jto)) (5-17)
a(jco----_V(J°'))t (T + a(J_o-'--"_

i
By analogy with the previous work (i.e., Le-_mA I), the matrix --V(j_)

is set equal to -Q_A IG. This leads to a set of equations which can be

solved for the elements of Q2" Once Q2 is known it can be used in (aa)

to find Pj which is positive definite by Liapunov's theorem.

By going back to the necessity proof, it can be shown that Q2'

defined as above, satisfies (bb). Substituting the expression -Q_Aw-IG

into (5-17) gives

T'T + 2HeH_A_'IG - oG'Aw-I_RAw'IG - cG_A_ -It DAw-IG

= (T - Qi_o-IG) _ (T - Q_,'IG) (5-1s)

Performing the multiplication on the right hand side and cancelling the

T'T terms gives
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2HeH_o'IG - oG_A,_"I_ R_-IG - cG_ -I_ D_,_-IG

= G=_"It Q2Q_A_-IG- 211eT_Q_A_-IG (5-19)

Using (5-13) in (5-19) gives

2HeH:Aw-IG- pH,A -I* RA_-IG - _G_A-I * DA_-IG

- i_
= G_ PG+ G'PA_-IG - pG'A_-I_ R_,-IG

. cG_ -I_ D_-IG - 2HeT_Q_A-IG (5-20)

Cancelling the proper terms and rearranging the equation gives

2HeH_'IG ÷ 2HeT'Q_'IG - 2HeG'PA_-IG= 0

or

2He (H _ + T_Q_ - GTP) A_'IG = 0

Since A_)-IG # 0 and has rank m_ (5-21) can only be true if

(5-21)

H _ + T_Q_ - G'P = 0

Or, by taking the transpose and rearranging,

Q2 T = PG - H (bb)

Therefore_ the Q2 matrix satisfies (bb)_ and a solution Q2 and P to (aa)

and (bb) has been found using (_'_)_ so that this condition is sufficient.
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Now that the lemmahas been proved, equations (5-8)-(5-10) can

be considered again. Comparing (5-9) with (bb) and repeating (5-10)

gives the equations

G=B O=0

H = I(A_C7 + C) (5-22)

T'T = I(_C_B + B'C_) + K "I

Substituting (5-22) into (_m_) gives the condition for (5-8) and (5-9)

to have a solution Q2 and P > 0. This is

I(_C_B + B_C_) + K "I + He(_C_A_-IB + C_Aw'IB) > 0 (5-23)
2

But

and

-i -I

Substituting this equation into (5-23) gives

½(_c'B + B_=_-) + K-1 + _e(_C'J_-IB - _C_ + C=_-IB) > 0

(5-24)

But He(-_C'B) = - I(_C'B + B_C_) so that the final result is

K "I + He(I + Ju_DC'Aw'!B > 0 (5-25)

Therefore, given C_A_'IB and K, if a _ = diag (_I' " " . , _m ) can be

found such that the matrix on the left in (5-25) is positive definite,
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then the system (5-1) is absolutely stable.

Other work on this type of system of equations has been done by

Popov (1960) and Ibrahim and Rekasius (1964). Their results are essen-

tially the sameas those obtained here_ but the method of derivation is

considerably different. Their main theorems are presented here.

Theorem of Popov: If_ being given the system (5-i)_ with A

stable_ one is able to find three diagonal matrices P_ Q3 K

possessing the following properties:

I. The diagonal elements Pi and ki of P and K are positive
2. The Hermitian matrix

H(_) = ½(G(_.) + G_(_)) (5-26)

where

G(_) - - (P + J_Q)C'(j_I - A)-IB + PK "I (5-27)

and where G_(w) is the adJoint of the matrix G(_)_

satisfied Sylvester_s conditions (that is to say is

strictly positive definite) whatever the real number w.

3. The symmetric matrix

S - - 2_QC'B - ½(QCTB) ' + PK -I (5-281

where (QCB)' is the transpose of the matrix QC'B 2

satisfies Sylvester_s conditions.

From these conditions_ the trivial solution of the system (5-1)

is asymptotically stable in the large whatever the function

_(X)_whose components fi(Yi) satisfy the inequality

0 _ f_(yi)y i _ kiYi 2

This theorem can be made to look exactly like the results derived above by

premultiplying (5-27) and (5-28) by p-I and letting p-iQ _ _. Then

(5-26) is the same as (5-25) and (5-28) is the same as (5-10).

Theorem of Ibrahim and Rekasius: The system (5-1) is globally

asymptotically stable if there exists a non-negative diagonal

matrix Qj and two positive diagonal matrices G and H such that

i. - f(o) 7QC_Bf(o_ < 0, f(_) _ 0

2. the elements of GH "I satisfy the inequality
2

0 < oif(_ i) _<_giol/k

3. the matrix inequality
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T(j_) - H + 12(QC_A + GC _)(j_'l - A)'IB

+ B_(-J_I - A') -I (QC_A + GC')') > 0

holds for all real w.

A is asymptotically stable.

(5-29)
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Note that the B matrix here has the opposite sign of lbrahim and Rekasius'

paper. This theorem requires some manipulation before it can be compared

with the previously derived results. Rewriting (5-29) gives

H + He (QC°A + GC_)A_0"IB > 0

H + He (QC_AA_-IB + GC_A_-IB) > 0

But AA_ "I = J_A_ "I - I . Therefore

H + He(JwQCgA_'IB - QC_B + GC_A_-IB) > 0

H + He((JwQ + G)C_-IB - QC_B) > 0

Taking out the QC'B term and letting G - I gives

H - lteQC_B + He(I + J_Q)CQA_o-IB > 0 (5-30)

Letting H = K -I and Q = _ gives the same notation as the previous work.

If (5-30) is compared with (5-25)_ it is seen that there is an

extra term present which is not in (5-25). This term is required to be

negative semidefinite so that it makes (5-30) a more restrictive criterion

than (5-25). The reason is that the first requirement of the theorem

is that - _QC°B_ be less than or equal to zero. This is a condition

which is not required by (5-25). The analogous condition in the



development of (5-251 is (5-i0)_ that is_

2(_C'B + B'C_ + > 0K-I (5-10)

80

This inequality can hold true even if _C_B + B_C_ is not positive semi-

definite. Since _ - Qj then QCIB + (QC_B) _ is not required to be positive

semidefinite. An example of a case where the first condition of Ibrahlm

and Rekasius _ theorem is violated_ so that their theorem cannot be applied_

is given later. However_ (5-251 is able to give results in this case.

Actually_ the criterion of Ibrahim and Rekasius can be derived

from Lemma 2 by writing V as

-V - (Q_ _ + T_(o_))_(Q_ _ + T!(_) )

This does not change the G and H matrices in (5-22) 7 but now T_T _ K

Therefore_ applying Lemma 2_ with the additional restriction that

_'_C'Bf is positive semideflnite_ results in 5-30.

-i

Example 5-1

Consider the system whose block diagram and equations are given

in Fig. 6. The stability criterion given by (5-251 is

K -I + He(l + J_,_-_C]g -IB > 0 (5-25)

Calculating C_A_,-IB gives
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__I
s+l

x 2

a) Block Diagram Defining the State Variables

,. A__- B_f(_, __ = C_x

A

L0 -2

B

-1 0

0 -1

C 1] =

0

1

-1

0

b) System Equations

Fig. 6, System of Example 5-1o



CtA-IB m

-i
j_+l

(I + jw_--_C'A_-IB =

I

]_+2

0

J_+2

j_o+l 0
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Substituting this into (5-25) gives the following as the stability

criterion°

i

k I
l(1+J_l 1-J_2)

1 )_ 1
3 ( kq

> 0

or

I I

k I 2

I

(B I - _2)_02 + (B I - 2 + 2_2)Jw - I

(2 + j_)(l - j_)

)_
I

k 2

>
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2
Setting the coefficient of ,_ and j_ in the numerator of the frequency

dependent element to zero gives

_I - _2 _ 0, _i _ _2

2
_I - 2 + 2_2 = 0, 61 = _ _ _2

The matrix is now

B m

I -I

k_ 2(2 + j_)(l - j_)
J.

-I

2(2 - j_)(l + j_)

n

i

k 2

> 0

Applying Sylvester_s condition gives

i I

klk 2 4(4 + 2)(i + u2) > 0

The frequency dependent term has its largest magnitude at _ - 0 so that

klk 2 < 16 is sufficient for the system to be stable°

Actually a much better answer can be obtained from a Liapunov

function which is just the sum of the integrals of the two nonlinearities

with _i = _2 " If _I _ I_ then in this case

V _ - 2fl(Ol)a I - f2(_2)a2
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and the system is stable for all nonlinearities which lie in the first

and third quadrants. This result cannot be generalized since this type

of V-functlon usually results in indefinite V-functions.

If _i = _2 _ I is put into the stability criterion matrix 3 in-
2

stead of _i _ _2 u _ 3 the result is

or

I i -i
k_ 2(2 + J_

2(2 - j_) _22

I I

klk 2 4(4 + _,2)

> 0

or klk 2 < 16 as before. It has been seen that, by making P _ 0, an

infinitely better result is obtained. Why doesn't this result appear

from the stability criterion? The answer to this question is obtained

by looking at (5-8)3 (5-9) and (5-22). The stability criterion gives

necessary and sufficient conditions for the solution of (5-8) and (5-9).

By making P and Q2 zero_ equation (5-9) becomes H _ - A'C_ - C = 0.

This is never true for °l = _2 u I so that P = 0 is not a solution to

the set of equations.



Example 5-2

Consider the same system as Ibrahim and Rekasius; the block

diagram and equations are given in Fig. 7. Again the stability

criterion is given by (5-25).
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K-I + He(l + J_)C_)'IB > 0 (5-25)

The term A_..-I is

-I i

A_ = (j÷5)(j_÷3)(0+2)

m

0 (jo_5) 2 (jo._l-5)

0 -6 (J_0+5) Jw (j_0+5)

w q

Calculating C_'IB gives

-I
C_ B -

0 l+j f_
(Jc,.+3) (J_.÷2)

This equation is multiplied by (j_ + I) giving

0
(l+j_) (l+J_l )

(jc, q.-3) (j c,.÷2)

0

Putting this quantity into (5-25) results in
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s+l
(s+2)(s+3)

a) System of Ibrahim and Rekasius.

4 _I s+5

L

b) Block Diagram Defining the State Variables.

x = Ax_ - Bf, £= C'x

A

m

-5

0

0

0 0

0 i

-6 -5

u

-I 0

B= 0 0

0 -I

n

C) System Equations

C !

-I

0

Fig. 7. System of Example 5-2.



i i (l+j_,) (l+j_ _i) l-j_,_2

k I 2 (jr,+3) (j_+2) 5-j_

7 ( k-7

> 0
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This can be rewritten as

! ! (_!-_ 2) Jc_:3+(2"4P'l-5_2) _2+(5 _i+6_2 -I) j_'_-!

k I 2 (j_B) (j_+2) (5-j_)

1 )_ 1
7( k2

> 0

The matrix C_B in this example is skew symmetric so that if

_i = _23 then the expression _C'B + B_C_ _ 0. The Ibrahim and Rekasius

criterion is identical to (5-25) in this case.

i

Ibrahim and Rekasius set k I = k 2 - 6 and 81 = _2 _ _ getting
i

I

6

1 2 5
1 _ -I+ _j_
2 (jco+3) (Jco-l-2)(5-Jco)

1 )* 1

0



Applying Sylvester_s conditions to this matrix gives
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i__ _ (i-,_2/2) 2 + 2_,_2136

36 4(_2+4 ) (_j2+9) (_2+25)

> 0

or

> oi (3 3 2 2 25 2

(_2+4) (_2+9) (,_2+25)

This inequality is true for all _, so that the given system is absolutely

stable for nonlinearities in the sector [0, 6] .

Instead of picking the _i _ they can be calculated by setting

the coefficients of the jw 3 and o02 terms to zero. This gives 81 = _2

and 2 - 9_I = 0 or _i " 2/9. The matrix is

i

k I

I 13j( /9 + i

2 (j_.+3) (j,.+2) (5-j_)

1 ). I
2"( k_

> 0

Applying Sylvester_s conditions gives

169oo2/81 + 1

klk 2 4(o02+4) (o02+9) (0o2+25)
> 0

The maximum value of the frequency dependent term is approximately

1/1290. Therefore, if klk 2 < 1290 or k I : k 2 < 35°8, then the
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system is absolutely stable. This is a considerable improvement over

the results of Ibrahim and Rekasius. However, it leaves room for

improvement as a simple check showsthat the linearized system is

stable for all positive gain.

Example 5-3

Consider now the same system as in Example 5-2 except that the

s + i term in the numerator is missing. The block diagram and equations

are given in Fig. 8. The term _C'B in this case is indefinite, and the

Ibrahim and Rekasius cannot be applied. The term C'A_-IBtheorem of

is

C_A_-IB .

m

0 i
(j_+3) (j_+2)

-i

(j_÷5) 0

(jto_-l) C'AU" IB =

B

0 (J_i_l'l)

-J_'_2-I
0

j_5

Applying (5-25) gives the following as the stability criterion.

k_ 7 [(ju+2_)(j_+3) + 5-j_------_

i ). 1
_7 ( k_

> 0
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fl _ 1

a) Block Diagram Defining the State Variables

x = Ax_- Bf(_, _a= C_x_

A

0 0 -i 0

0 i B= C_ =

-6 -

J-i 0

0 0

b) System Equations

Fig. 8. System of Example 5-3.



This inequality can be rewritten as
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I
kI 1 E 1-_(_ l-- l-- 5_ 2) (_ 2_(6_6_2_-5 _ l) j_--,O2 j{_3 1(j_+2) (jc_+3) (5-j_l)

1 )_ 1
7 (

> 0

Again setting the coefficients of jw 3 and w p to zero gives 62 = O_

61 = I_ and the resulting matrix is

k1 2 (j_+2) (j_+3) (5-j_)

1 ). I
2( k_

m

Applying Sylvester's conditions gives

> 0

I

klk 2

(121_,_2 + I)

4 (_2+4) (_2+9) (_ 2+25)
> 0

The maximum magnitude of the second term is approximately 1/24.8 so that

the system is absolutely stable for klk 2 < 24.8. A check on the linear-

ized system shows that klk 2 must be less than 280 for stability.

5.3 The Time-Varying Case

Once again sufficient conditions for the time-varying case can

be obtained by Just considering the quadratic Liapunov function. The
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derivation of the previous section goes through with _ = O_ and there-

fore_ for the system

_ A_ - B!(_,t)

E = C_ (5-31)

the condition for absolute stability is

-I
K + HeC_'IB > 0 (5-32)

The case where the integrals of the time-varying nonlinear

functions are retained in the Liapunov function is also amenable to

treatment in a similar manner as in Chapter 4.

is

_o

V - x' Px + / f= (z__3t)_dz
l.J

0

The Liapunov function

(5-33)

For this case -V is nothing more than (5-5) plus the time derivative

of the integral term, or

-V = x_ + f(o,t) ° (2B'P - _C'A - CJ)x

+ f(__, t)' (_C'B + K'l)f(__, t) + _(o__t)

/_-- _f _(z_jt) --

_' -- _'_t _ dz (5-34)

0

The term >_(_a,t) -f(__,t)'(_a - K-If_,t)) _> 0 has been added and sub-

tracted.



are
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The three cases are considered again so that the inequalities

Case I / °i _fi(zi, t) I 2 (5-35)
_/ _t dzi _ _i ffi

0

Case II ai_fi(zi, t) II

dzi --< _i _ifi(ai 't) (5-36)

0

Case III
[ aiSfi(zi, t) III .2

/ _!,t dzi -< c_i fi(_i, t) (5-37)
J

0

In each case the summation of _i multiplied by the right hand

side of the inequality is added to and subtracted from V giving the

following results.

Case I -V = x'(Q-C_')x

N

+ f(_a,t)' (2B_P - _C_A - C_)x

+ ice,t)'(_c_+K"I) f(__,t) + x(__,t)

__a af(z_, t) '
+ (cr_--'_ - / "_ dz)

-- -- j bt --

0

(5-38)



Case II -V = x'Qx + f(__,t)_(2B'P - _C°A - C ° - _)x
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+ f(o_,t) °(_C_B + K'l)f(__,t) + N(__,t)

a

+ (='I__f(_t) F- _f(z,t)'-- --- IBdi_)

-- 0J _t

(5-39)

Case III -V = xgQ_i + f(_o,t)(28'P - _C'A - C')x

+ f(_,t)°(_C_B + K -I - B-_)f_(__jt) + >,(__,t)

?_a 8f(z_, t), -
+ (f(_,t) _ _ f(_,t) - - _ dz

-- - - J Ot -

o (5-4o)

where _(x m diag (BIC_I, _2_2 , . .., _m_n ). The last term in ali

these cases is positive.

Similar to the previous development_ the expression for -V should

be of the form

-V I (Q_xz.....+ Tf(a-Jt))°(Q_ x+Tf(o-q_t)) + x J_ Dx + k(_o,t)

+ (Positive term) (5-41)

Comparing (5-41) with (5-38)i (5-39) and (5-40) leads to the following

set of equations.

Case I Q - C_(_C_ - Q2Q_ + ¢ D

2Q2T = 2PB - A367 r - C

TOT = ½(_C'B + B_C_n-_+ K -I

(5-42)



Case II Q - Q2Q_+ ¢ D

2Q2T- 2PB- A_CB- C - _o_

- ½( c'B+ + K-IT'T

Case III Q - Q2Q_ + ¢ D

2Q2T - 2PB - A_C_ - C

T'T - 2(_C'B + B_C_) + K -I - B_

Applying the Lemma 2 to each case results in the following

stability criteria.

Case I K -I + He(j_,_I)C'_u-IB - B_A_ -I CC--U_]=Aw'IB > 0

(5-43)

(5-44)

(5-45)

Case II K "I + He(jw_+I_)C'_-IB > 0 (5-46)

Case III K-I _O--i+ He(j_+I)C_A_ -IB > 0 (5-47)
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When there is one time-varying element_ these criteria reduce to the

criteria of Rekasius and Rowland (1965)_ which are given in Chapter 4.

Example 5-4

The same example as in Example 5-2 is worked except that now

the nonlinearities are assumed to be time-varying. The system equations

are given in Fig. 7. The stability criterion given by (5-32) is illus-

trated first.
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K-1 + HeC'A, -IB > 0 (5-32)

C'£-IB =

0 l+j:

(j"+3) (j_,'+2)

K -I + HeC_,:-IB =

-I

j+5 0

1____ __1 C i+]::_

kI 2 L (j:+3) (j_,q-2)

1 )_ 1
( k-_

Applying SylvesterJs conditic_n gives

i (2, 2-1) + 2

klk 2 4( ,_+25)(: _+4)(=+_)

The maximum m_gnitude of the frequency dependent terms is approxim,_tely

1/80 so tllst klk 2 < 80 is sufficient to insure that the system is stable.

To illustrate the second type of stability criterion_ the time-

varying nonlinearities are assumed to have specific forms. Let

fl(_l,t) = (i - cos t) gl(_l)

f2(o2, t) = (i - cos 2t) g2(_2)



where 0 _ gi(_i)/_i ! ki/2. The partial derivatives with respect to

time are

_fl
_-_- = sin t gl(al)
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_f2
= 2 sin 2t g2(a2)Ot

Using the first type of constraint gives

_I k!_12 2
/'- sin tgl(Zl)dZ I _< _ = _i_i

0

2
k2_ 2

/-a2 2 sin 2tg2(z2)dz 2 <-_-- - _:2_22l
J

0

The stability criterion is given by (5-45) and is

K-1 + He(j_+I)C,_0-1B- B_A_/l_C_'A "l_> 0 (5-45)

The term K -I + He(J_+I)C'_-IB has been calculated in Example 5-2.

The term B_-I_c_A_-IB can be calculated giving

_2k2
0

2 (m2+25)

B_Aoo-I*c_'A -IB =,

_ikl(_2+l)

0 4 (_2+4) (w2+9)



Using the results of Example 5-2_ that is _i = 92 = 2/9_

stability criterion as

gives the
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m
i

k i 9(w2+25) 2 ((jL>+3) (j<._2) (5-))

I )i i kl ('<'2+I)

( k2 18(.,2+4)(-,2+9)
I

> 0

Applying Sylvesteris criterion to this matrix gives

i k2

kl 9 (_2+25)
> 0

and

I I ('.2+1,)

klk2 9 (w2+25) 18(< ,2+4) (,>;2-I-9)

klk 2 (t_2+l) 169u)2181 + I

+ 162(_o2+4) (cj2+9) (o_2+25) -- 4(_2+9 ) (w2+4) (uj2+25) > 0

In the first inequality the frequency dependent tercelis largest when

m2 = 0 so that

1 k2

k I 9(25) > 0

klk 2 < 225
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In the second inequality the negative term which has the largest magni-

tude is i/9('_2+25). The frequency at which the n_gnitude is largest is
2

I 0. It can be shownthat the frequency at which the sumof the

negative terms has its largest n_gnitude is also zero so that, if the

inequality is satisfied at zero_ it is satisfied for all _. Letting

_2 _ 0 gives

1 I 1 klk 2 1
+

_ _- PP_ 64_ 162(4_ (9) (25) 4(9)(4)(25)
> 0

Setting this equal to zero gives

(klk2)2 - (903.5)klk 2 + 14.6 x 104 I 0

and solving this gives klk 2 < 216.7. Therefore_ the new criterion gives

a substantial improvement over the previous case since_ in that case_

klk 2 < 80 was the best that could be done. The criteria (5-46) and (5-47)

cannot be used with the assumed nonlinearities because the values of Oi

are infinite.

5.4 The Particular Case

It does not appear that the general case of m nonlinearities with

a zero eigenvalue in the A matrix can be handled by these methods. Of

course the system equations must be manipulated so as to remove the

equation which gives the zero eigenvalue, getting a matrix AI, of order

n-i by n-l, and an additional _ equation_ as illustrated in Chapter 2_

(2-5). A simple example is worked which shows that a Liapunov function

of the proper form does not exist for a particular problem. Thereforej
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a general theory does not exist, since if it did; it could solve that

problem.

The system and system equations are given in Fig. 9. The most

general quadratic form of the two variables plus the integrals of the

two nonlinearities is used as the Liapunov function.

V a x 2 + b_x + _--_2+ f _ f_x
=--2 BI // f(z)dz + B2 lJ g(z)dz

0 0

The time derivative is

= -ax 2 - 5_x - (52-b) xg(x) - b_f(_)

+ (__l-_2)f(_)g(x) - axf(_)

the only definite term in _ is -b_f(_), but there is a term b_x which

is indefinite. Since f(_)/_ can have any value between 0 and kl, the

indefinite term can be positive and greater in magnitude than the

negative definite term. However_ since in the analogous one nonlinear-

ity case there is no cross term in _ in the Liapunov function, setting

b = 0 removes this problem. However, if that is done in this case, then

there is no definite term in _ or f(_) at all. Therefore, a Liapunov

function of the proper form does not exist for this problem, since the

most general quadratic plus integral form of Liapunov function was

considered.

A Liapunov function which works for this simple system is

_-_ /xV " / f(y)dy + g(z)dz

0 0

V- - g(x)x



i01

s+l

x

i

s

a) Block Diagram Defining the State Variables

= g(x), 0 _< g(x)/x _< k2

x -- -x - f(_), 0 < f(_)l_ < k I

b) System Equations

Fig. 9. System with Two Nonlinearities and a Zero Eigenvalue.
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Here _$is semidefinitej but absolute stability is proven for time invari-

ant nonlinearities. _owever_ this Liapunov function cannot be generalized

since, as before_ this type of Liapunov function leads tc an indefinite

V in manycases.

There is a generalization of the simplest particular case which

is amenable to treatment by the above methods. Letov (1961) considers

this case for two nonlinearities in what he calls systems with two

actuators. This wo,,ld ._eemto be systems with motors, etc. operating in

parallel. If m nonlinearities are considered 3 his equations can be

generalized to be of the form

i- AZ-

i " f(_ (5-48)

_ _iy - Rll

where A has all its eigenvaluas in the left half plane. This set of

equations can be put into a form similar to (2-5) by using the trans-

formation

x=Ay-B i

The equations become

• Bi

i-

o = C_(A-Ix + A-IBm)
-- I -- - Rll

_o = C_x- Ri

(5-49)



_,here these equations are now in a form which is analogous to (2-5).

The matrix R is _n by m while B and C are n by m.

is also analogous to V I of (3-8) and is

V = xtpx + !_R'LRI +

Taking V gives

(I

/- f(@ =id _

0
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The Liapunov function

(5-50)

+ f(_a) (5-51)

Substituting for i_R _, i and _ and collecting terms results in

_ x _ (AtP + PA)x - x a (2PB-CLtR-CLR - A'C_--_f_(o)

-f(__)_(TC_B + _--Rt)f(_o) - o'LRf(a) - f(o_)R_Lo (5-52)

Adding and subtracting _.i(_) = (__- K'If(__))'eRf(o) and k2(__) = f(_)tR_L

(a - K'if(a_)) to (5-52) results in the equation

-V = xtQ_ + xt(2PB-CL_R - CLR - A_C_)f(_)

+ f(_)(_C_B + _R + K-ILR +R_LK-I)f(__) + _i(__) + _2(o_)

(5-53)

The term f_(_C_B + _--R+ K -I LR + R_LK'I)_ should be positive deflnite_ and

therefore the symmetric part of the ms trix must also be positive

definite. Since -V should be in the form given by (5-6)_ the follow-

ing equations result.
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Q= QQ_ +£D (5-54)

2Q2T = 2PB - CLtR - CLR - A_C_

T_T = He(_C'B + _R + K-1LR + R'LK -I)

(5-55)

(5-56)

The use of the Hermitian part of the matrix in (5-56) comes from the

fact that the Hermitian part is the symmetric part for real matrices.

The necessary and sufficient conditions for the solution of

equations (5-54) and (5-55) to exist as matrices P > 0 and Q2 are that

T_T + 2HeH_'IG > 0 (_)

where

H = 21--CU_R+ 21-CLR+IA_cT/_

G=B

Substituting G, H and T_T into (_) results in the inequality

He(_R + K-ILR + R'LK -I)

+ He(R_L + R'L g + j,_-_C_A -I B > 0 (5-57)
CO

Using the fact that He(R_L + R_L ' + jc_)R/j_ = He_R gives the result that

the system (5-49) is absolutely stable if matrices _ and L can be found

suzh that the following m_trix inequality holds for all real _0.



He(K'ILR + R_LK-I)

105

+ He(R'L + R_L' + jw_)(C_A-IB + R/jr0) > 0 (5-58)

Consider the special case where R is a symmetric matrix. Let

2LR - I. The stability criterion (5-58) becomes

K -I + He(l + J_r)(C_A_IB + R/J_) > 0 (5-59)

For the case of one nonlinear element_ (5-59) reduces to the criterion

for the simplest particular case given in Chapter 3. By putting

2LR = I in (5-50)_ it is seen that R must be positive definite if V is

to be definite. This is analogous to y > 0 in the single nonlinearity

case of Chapter 3.

Example 5-5

Consider the system given by the block diagram in Fig. i0.

system equations are

m=Ay - Bi

The

! -

where

A

-i 0

B

2 I

2 4
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+

s+l

2
s+2

IJ Yl _i !
S

2
I

S

+

_I!

a) Block Diagram Defining the State Variables

Yl = -Yl 2_I - _2

Y2 = -Y2 - 2_I - 4_2

_I -- f(Yl )

_2 -- f(Y2 )

b) System Equations

Fig. i0. System of Example 5-5.



Making the transformation X = A_ - Bi gives
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x"- AX - B_f(__)

= y = A'Ix + A-IB! = C'x - Ri

where

C g = A "I =

-I 0

-i B, -A = R= I1
The stability criterion is

K-I + He(I + J_oD(C=A "lB + !_ R)
j_

>0 (5-59)

The term C_A_-IB is

-2 -i

J'_+l j_+l

-I -2

jw+2 j_o+2

C,A-1B +l_.R.
j_

j,_(j_+l)
!

j_(j_+l)

4

jw(J_+2)
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w j00

2 (l+jw 61)

Jw(jw+l)

2(l+jw_ 2)

jw(J_+2)

j_'(j_q-l)

4(l+jw_ 2)

J_)(j_+2)

Taking the Hermitian part of this gives

He(I+j_-_ (C'A "IB + I---R) ,*i

j_ 2

D

2(2_i-2)

w2+ I

(_i-2_2) j_+(2_2+2_i-3)

(J_2) (l-jw)

4(4_2-2)

_2+ 4

If _i " 292 " I_ this becomes

He(l + j_)(C_Aw-IB + _-R) - 0
jw

Therefore_ the stability criterion is

K -I > 0

so that the system is stable for all positive k i.

The above results say that Q2 and P must be zero. In a similar

manner to the first example in section 5-2_ this implies that H = CLR +

_AIC_ _ 0. The proper quantities are put in this equation to see if P
2

= O, Q2 _ 0 is really a solution of the set of equations (5-54) and (5-55).
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CLR + - C +
2

since 2LR - I.

0

I

2

D

-I

+

0

m

m m

-I 0

I

2
B m

0 -i

0

I

1

+

0

m

0

i

2
m

0

=0

i

2

-i 0-

0
i

2

Therefore H = 0 is satisfied so that P = O, Q2 m 0 is a solution to the

set of equations. This should be compared with the results obtained in

Example 5-2.

5.5 Conclusions

In this chapter frequency domain stability criteria are obtained

for systems with more than one nonlinear and/or time-varying element.

This is accomplished by first proving Lemma 2, which is a generalization

of Lemma i of Chapter 3. Lenxna 2 states that a matrix, which is a

function of frequency, must be positive definite for all frequency if

a set of algebraic equations is to have a solution. In the case where

the matrix is one by one, Lemma 2 reduces to Lemma i.
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Lemma 2 is used in conjunction with the Second Method of Liapunov

to obtain stability criteria for the principal case of systems with more

than one nonlinear and/or time-varying element. In the case where

there is only one nonlinear and/or time-varying element, these criteria

reduce to the criteria given in Chapters 3 and 4. The criterion for the

tlme-lnvariant nonlinear case is shown to be equivalent to the criterion

obtained by Popov (1960) and better than the criterion obtained by

Ibrahim and Rekasius (1964). The criterion for the time-varying case,

which extends the work of Rekasius and Rowland (1965), has not been

obtained previously.

The particular case of systems with more than one nonlinearity

is discussed 3 and a stability criterion is given for a special particular

case. Again_ if there is only one nonlinearity_ this case reduces to the

simplest particular case of Chapter 3. The general particular case does

not appear to be manageable by the methods of this chapter.

This completes the development of stability criteria for systems

with more than one nonlinear and/or time-varying element. The next

chapter contains concluding statements and indicates areas of further

work on this subject matter.



Chapter 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

6.1 Conclusions

The absolute stability of nonlinear and time-varying systems

is studied by use of a Liapunov function made up of a quadratic form

plus the sum of the integrals of the nonlinear terms. The frequency

criterion of Popov is extended by extending the matrix-lnequality

method of Yakubovlch. This criterion is shown to be necessary and

sufficient for the existence of the Lurie type Liapunov functlon_ and

it is generally easier to use than the Liapunov approach. Extensions

to time varying systems are given.

The objection can be raised that the results are not too good

since it was shown that for certain problems there are other V-functions

which give better results_ and also that the results do not come close

to the linearized system stability region in many cases. The answer to

this objection is essentially that this is the best that can be done

at this stage of the development of the theory. There is no way avail-

able of finding the best Liapunov function for a given system. The

method developed in this work allows for a logical process of deter-

mining stability. If the frequency condition is met_ it guarantees

the existence of a positive definite V and -V.

In trying to find Liapunov functions for high order systems_

one of the main difficulties is that there is no easy way of testing

iii
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high order non-quadratic or partially quadratic forms for positive

definiteness. Therefore_ although maybe not giving the best Liapunov

function_ the methods presented here give some results which may be

adequate for a given problem_and which also may be the only results

which can be obtained in a reasonably simple manner.

In summary the main contributions of this work are:

I. The matrix inequality method is extended by means of proving

Le_n_ __ P, This results in an extension of the Popov stability

criterion from the scalar to the matrix case.

2. By using Lemmm 2_ the work of Rekasius and Rowland for time-

varying system is extended to systems with many time-varying

elements.

Other contributions of this work are:

i. By using the extended frequency criteria_the work of Yakubovich

(1946c) on forced systems is extended to systems with many non-

linearities. This is given in the Appendix.

2. Some indication is given as to when the criteria of Rekasius

and Rowland can be used to get improved results.

3. The work of Bonglorno_ Sandberg_ and Narendra and Goldwyn is

compared with the Popov criterion and is shown to be equivalent

to it.

4. The criteria of Ibrahim and Rekasius and of Popov are compared

with the criterion which is derived in this work for the case

of many nonlinearities.
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6.2 Further Work

There is a good deal of room for improvement and extensions of

the results which have been presented here, since only sufficient con-

ditions for stability are given by the Second Method. One way of improv-

ing the sufficient conditions would be by getting some information as to

the slope of the nonlinearity into the Liapunov functions. Absolute

stability means that the system must be stable for any nonlinearity in

tb_ _ector= no matter how violent the changes in its slope are. By in-

corporating some constraints on the slope of the nonlinearity better

results should be obtainable. Some results on this approach have been

obtained by Brockett and Williams (1965) for the case of symmetric,

monotonic nonlinearities.

Further investigations into forced systems should also prove

fruitful, since most physical systems have some input forcing function.

Also, digital computer programs to aid in the computational aspects of

the problems can be investigated.

The cases of systems with zero and pure imaginary eigenvalues

need further work, especially the cases of more than one nonlinear and/

or time-varying element. The simplest particular case of the time-vary-

ing system does not have a stability criterion which is similar to the

Rekasius and Rowland criteria. This also should be investigated.

Finally, there are results available for absolute stability by

means of Popov's criterion for systems with time delay (Popov and

Halanay 1962), systems with hysteresis and discontinuous nonlinearities
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(Gelig 1964) and sampled-data systems (Jury and Lee 1964). Applications

of Lemma2 to these types of systems should lead to extensions of the

existing results.



Appendix A

ABSOLUTESTABILITYOFFORCEDSYSTEMS

The matrix-inequality methodcan be used also for forced systems.

Again this is the work of Yakubovich (1964c). The system equation that

he considers is

x ,, Ax - bf(_) + r(t)

_ I C_X
I

(A-l)

where !(t) is a vector function bounded for - _ < t < _ . Yakubovich

considers the case where f(_) is discontinuous so that he can take into

account the possibility of a sliding regime. The results he obtained

are not discussed in detail here, but it is shown that the previous ex-

tensions to m nonlinearities can also be made in this case.

The system equations for the more general case are

= - Bf(9 +rCt)

2
a _ = C_x, 0 < fi(_i) < ki_ i , f(0_) I O

(A-2)

The method is illustrated by proving the following theorem.

Theorem: In the system (A-2), let A have all its eigenvalues

in the left half plane: let !(t) be bounded for - _ < t < _
and let the condition

K-I + HeC_A_'IB > 0 (A-3)

be satisfied for all real _.

115



Then

at any solution of (A-2) is bounded for t o < t < _

b) in the state space _x} there is a bounded region F such

that any solution reaches this region at some time, and

for t _ t o and _(t0)6 F it follows that x(t)E F ,

c) there is a number _ > 0 such that, for any two solutions

_l(t) and _2(t) and t _ t o
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-_ (t-to)
]xl(t ) - x2(t) ] _< const, e ]xl(tO) - x2(to) ] (A-4)

The simple quadratic Liapunov function, V = x'Px is used.

Differentiating V gives

-V = x_ + x _ (2PB - C)f(__) + f(a)'K-If(_)

+ k(a) - 2x°Pr(t) (A-5)

which is Just (5-57 with _ = 0 plus the term with r(t).

-i
o

HeC_A w B > O, then -V can be written as

If K -I +

-V ,,, (Q_x + Tf(o))_(Qix + Tf(o))

+ x_Dx + k(o__ - 2x'Pr(t) (A-6)

Since the first term is positive semidefinite and k(a__ is positive,

-V can be rewritten as an inequality.

-V > xWDx - 2xVpr(t) (A-7)

For any positive definite quadratic forms xVDx and _'Px_, there is a

constant _ such that x_Dx < _xVPx _ _Vo Therefore



V _< =_V + 2x'Pr(t) (A-8)
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Since _(t) is bounded, the term 2x'Pr(t) is going to be less than _ V I/2

for some value of _. Therefore

V < -_V + o V I/2 (A-9)

-? o2
For some constant V = C, -_C + _ _ _ 0 or C = _ . Therefore V =-_f

defines an ellipsoid in the state space. For any solution starting out-

side the ellipsoid_ V is negative and the solution eventually enters

the ellipsoid. Any solution starting inside the ellipsoid must stay

inside since V is negative outside the ellipsoid. This proves (a) and

(b) of the theorem.

Writing _ -x I - x2, _j - C_xj, _0 = -_I " --_2and _0 = f(-al) - f(-_2)

leads to

y = x I - x 2

y = Ax I - Bf(_l) + r(t) - (Ax2 - B_f(o2) + r(t))

y = A(x I = x2) - B(f(_l) - f(o2) )

x. = AX - (A-10)

Repeating the above calculations gives

• K-I_o-V = y'Q_ + y_(2PB - C)_ O + _ + k(_) (A-II)

where K "I comes from the additional condition that



fi(ali) - fi(_2i)

0 < _< k i
all - a2i

i18

(If [2 _ O_ this reduces to the previous inequality for the nonlinearity.)

Therefore, as before,

V(_) _<wV(y) (A-12)

This means that

-_ (t-t0)

V(y(t)) _< const, e V(y(t0) ) (A-13)

so that the magnitude of y is decreasing exponentially. Therefore

_ (t-to)
Ix1(t) - x2(t) l _< const, e Ixl(tO) - x_2(t0)l (A-4)

and the proof is complete.

It is easily seen that this theorem holds true if the _(£) in

this case is also a function of time, i.e., _(_t). This is because

V does not have the integral term in it, so that there is no change in

the above proof if _(a) is replaced by _(_t).



Appendix B

AN APPLICATION TO TIIE NUCLEAR ROCKET PROBLEM

This section contains an example in which the stability theory

developed above is applied to the simplified nuclear rocket propulsion

control system which was considered by Mohler (1962). This particular

system is studied here because Mohler gives an analog computer diagram,

which is _j_ed to obtain the system equations.

The stability of the operating point of this system can be

found by linearizing the system equations. However, this procedure

only gives stability information for some arbitrarily small region

about the operating point. By treating the nonlinear and cross-coupling

terms as time-varying coefficients, an attempt is made to obtain sta-

bility information in some finite region about the operating point.

Tile block diagram of the system is given in Figure ii. The

desired thrust Fd is assumed to be constant and the actual thrust is

given by the equation

F = Cl_ c W (B-l)

where cI is a constant, T is the propellant temperature at the corec

exit, and W is the propellant weight flow rate. The compensation and

value and turbopump equations are
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Fd

F

+

COMPENSATION t--_ VALVE AND ITURBOPUMP

NOZZLE I1_, Tc

1 P

REACTOR HEAT

EXCHANGER

Q Sh

-'--'t REACTORNEUTRONICS t_

Fig. I[ Block Diagram of Simple Nuclear Rocket

Propulsion Control System



= 0.1(F d - F)

eo

"_,,'= -Z_, + .04 (I: d - f) _ ,/

where y is a state variable without physical significance.

The reactor heat exchanger equations are

= c2T f + c3h(T f - T )
g

c3h(T f r ) = c4W(T - T.)g c I

(B-2)

(_-3)

(B-4)

(B-5)
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-.'here c3, o4_ and c_) are constants , Tf is the average fuel moderator

temperature, T is the average propellant temperature in the core, and
g

h is the heat transfer coefficient due to convection, and Ti is the

propellant temperature at the core entrance. T is approximated by
g

Ti + Tc Tc
Tg = • =-- (B-6)

2 2

Mohler considered the neutron dynamics to be approximated by the

average, one delayed neutron group approximation. The equations are

= I04(_k-.OO65)Q + .iC (B-7)

= -.1c + _ (B-S)

where C is tile concentration of delayed neutrons, Q is the reactor

power, and _k is the reactivity. The reactivity is assumed to consist

of three parts; rod reactivity, temperature reactivity, and propellant

reactivity.

The above equations are now manipulated in such a manner that they

can be written as

= Ax_- Bi(i,t) (B-9)



The state variables are y, W, Tf, Q, and C. Substituting for T
g

(B-5) and solving for T gives the equation
c

c3hT f + Tc(C4W-c3h/2) c3hT f

c C4W + c3h/2 c4W + c3h/2

in

(B-10)
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The heat transfer coefficient due to convection is

The re fo re

h = C6 _0"8

¢6 i=
T _ ....................

C C4 _ ,- c3C6_0.8/2

= f (W)Tf
(B-i])

The five equations are

y 0.i (F d c I _f(W)Tf'= - W)

°.

W = -- 2_ + .04 (F d - ,¢ V f (_:)ff'

" c3c6 " C,.8

= 1___. _ - -- W '" - f(W)Tf/2)
Tf C2 C2 (_ f ,

_'¢)_ y

,e

Q - 104 (6k - .0065) Q + .iC

c = - .ic +q

The d_sign condiLio_a are

(_-] 2)

i: = _.0 ib
_ j

Q -

W = 1.2 x i0 ) 10/sec
o

Q " 79 x IL!q BTU/sec7;Z _6

o

Tfo = _500 ° R

II el e
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_y making the transformation

x = y - ,!.5W

the first two equations are chanzed so that the nonlinear cross-

coupling term appears only in one of the first two equations. The

result, after substituting the coefficient values obtained from

Mohler's computer dia_ram, is

._ = - 5W --x

o.

:_ -- ._,'i_ + .04(_r a -- tO._:_ "]/i('O'rf :,_) + >:

if =-_--900 .192 Tf (i _-i f(W) W 0.8 (_'-14)

.°

Q = 104 < k - .0065) Q + .iC

_ = - .IC + 0

where f,(_) = i/ ,(.0232W 0"2 + 0.5).

These equations can now be put in the following form.

= -5_'- x

- .5W + x + a(t)_ T

(B-_)

where a(t) = .04 (Fd/W - lO.73_f(i')T
!

Tf _: i_ b(t) T900 f

where b(t) .l_i (i - f(W)/2)_iJ0"8= , and

(B-16)

o. e

q = I0 _ " k(t) - .0065) q + .IC

C = - .iC + Q

(B-17)
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The equations 13-15, B-16, and B-17 are three sets of uncoupled,

linear, time-varying equations. The Q term in (B-IO) acts as a

forcing function and this equation is stable as long as b(t) re-

mains positive. The stability criterion of Chapter 4 can be

applied to (B-15) and (B-17).

Consider (B-15). At the operating point, a(t) = 0.

_erefore, for changes in Tf and _, -k < a(t) < kand the Bongiorno

type of stability criterion can be applied. In matrix notation

(B-15) is

= + a(t)W

-5 W

The transfer function is G(jm) = ¢'A -lb.

G (Jm) = ,0 I

where A = (Jm + l)(jm - .5) = (Jm) 2 + .5J_ + 4.5.

(_-18)

(>-19)

Jw+ 1
G(Jm)

(j_)2 + .sJ_ + 4.5

The stability criterion is

K [ c_(l_)1 <l

(]1-20)

The maximum value of IG(Jm) l = 2.2 so that k<I/2.2 = .45 is sufficient for

stability. _o obtain some idea of what this means in terms of the state

variables, assume that the flow rate increases suddenly, while Tf cannot

change instantaneously. Then



Fda(t)mi n = .04 _ + _

and 6W is approximately 1600 ib/sec. This corresponds to a changemax
in thrust of about 13 X 105 ibs.

Equation (B-17) can be studied in the samemanneras in Example4-2,

and similar infomnation can be obtained.

This section has presented an approach to complicated nonlinear

systems which allows someinformation to be determined about the

stability region at the operating part of that system. As can be seen

from the discussion of (B-15), the results are very conservative.

However, since the original equations are nonlinear with cross-coupling,

a suitable Liapunov function, which would give better results, is not

known.
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Appendix C

SO_ CONSIDERATIONSIN T_iEPARALLELACTUATORPROBLEM

This section contains a brief discussion of someof the qualitative

aspects of operating devices, such as pumps, in parallel. The discussion

requires using the theoretical concept of controllability and looking

at someof its practical implications.

A system is completely controllable if every desired transition of

the system's state can be effected in finite time by someunconstrained

control inputs. Mathematically, this concept reduces to the linear

indepencence of certain scalar or vector time functions. The mathe-

matical details are not gone into here, but they are contained in the

paper by Kreindler and Sarachik (1964).

The simplest example of a system which is not completely control-

lable is sho_ in Fig. 12, where the state x can be controlled only

along (or parallel to) the line xI = x2, rather than in the whole two-

dimensional state space. Kreindler and Sarachik contend that this does

not matter if one is only interested in tile control of the output y.

However, in the practical usc there are definite limits on the values

that xI and x2 can attain. Therefore, if they are not controlled, then

the output of the system may also becomeuncontrollable.

In the case of actuators such as pumpsoperating in parallel,

similar problems exist. However, in the case of pumps, there is even

the possibility of one pump getting to the point where tile flow is

actually going backwards through the pump. In that case a circulating

flow is set up through the two pumps as shown in Fig. 13.
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X I

X2 _ X2

Xl

+(
-t-

Y

Fi_. 12 System Which Is Not Completely State Controlled

'RESERVOIR __

Fig. 13 Circulating Flow in Parallel Pump Operation



'file solution to this problem is to feed back information as to

tile actual output and the output ,of each pump in such a manner as to

keep both pumps pumping their sic.are. Consider for example Fig. 14 as

a possible configuration. The stability of the type of systems given

in Fig. 14 is discussed in Chapter 5 with section 5-4 being especially

pertinent.
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Fig. 14 Farallel Pumps with Feedback
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